
USC CSCI 467
Intro to Machine Learning

Assignment 1
Due: February 7, 2023, 11:59pm

Spring 2023
Instructor: Robin Jia

This assignment has 4 questions, for a total of 100 points. Make sure you also download the
hw1.zip file from the course website.

When submitting on Gradescope, note that you must make a submission both for the
written portion and programming portion. For the programming portion, upload the files
linreg.py and naivebayes.py with your completed solution. (There is an “autograder” which
will not actually grade your code but it will run it, and should return 0 if it encountered an error
and 100 otherwise.) Please still include the output of your code in the PDF report when
requested in the problems.

Question 1: Linear Decision Boundaries (22 points)
(Adapted from PML Exercise 10.2) Consider the two-dimensional classification dataset below
(+’s are positive examples, o’s are negative examples).

We will fit a logistic regression model with parameters w ∈ R2 and b ∈ R to this data, i.e.,
p(y = 1 | x;w, b) = σ(w1x1 + w2x2 + b).

(a) (3 points) Suppose we fit a logistic regression model with no regularization. In other
words, we are minimizing

L(w, b) = −
n∑

i=1

log p(y = y(i) | x(i);w, b)

Draw a possible decision boundary that would be learned. (You can do this in MS Paint
or your favorite image editor; the image itself is included in hw1.zip so you can just copy
and edit it.) How many classification errors does your model make on the training set?
(i.e., how many examples are classified incorrectly?)

(b) (3 points) Suppose we apply strong regularization only to the w1 parameter. That is, we
minimize

L(w, b) =

(
−

n∑
i=1

log p(y = y(i) | x(i);w, b)

)
+ λw2

1
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where λ is a very large number, so that w1 is forced to be 0. Draw a possible deci-
sion boundary that would result. Explain in 1-2 sentences how you chose this decision
boundary. How many classification errors does your model make?

(c) (3 points) Now assume we only apply strong regularization to w2, forcing w2 to 0. Draw
a possible decision boundary that would result. Explain in 1-2 sentences how you chose
this decision boundary. How many classification errors does your model make?

(d) (3 points) Finally, assume we apply strong regularization only to b, forcing b to 0. Draw
a possible decision boundary that would result. Explain in 1-2 sentences how you chose
this decision boundary. How many classification errors does your model make?

(e) (4 points) Take any decision boundary defined by parameters w and b. Suppose we mul-
tiply w and b by 1000. What happens to the decision boundary? What happens to the
margins of the correctly classified examples and the incorrectly classified examples? (Note
that the margin on example (x, y) is defined as y · (w⊤x + b).) What does this do to the
values of p(y | x;w, b)?

(f) (6 points) Now consider each of the four scenarios from parts a, b, c, and d. In each
case, suppose we take the w and b that created the decision boundary you drew, and
repeatedly multiply w and b by 1000. Will the logistic regression loss function decrease
or increase? Provide a separate answer for each of the four scenarios (a, b, c, and d), and
explain your reasoning. (Hint: Recall that we can write the logistic loss as the function
g(z) = − log σ(z) applied to the margin. Based on your answer to the previous part, look
at what happens to the margins for every example in each scenario.)

Question 2: Regression with Laplacian Noise (23 points)
In class, we saw that linear regression “falls out” as the right algorithm to use if we assume
that the data is generated by a linear function plus Gaussian noise. In this problem, we will
see what changes when we assume that the noise is not Gaussian but instead follows a different
distribution called the Laplace distribution.

The Laplace distribution is parameterized by a mean µ and a scale parameter b.1 The proba-
bility density function is

pLaplace(x;µ, b) =
1

2b
exp

(
−|x− µ|

b

)
.

Recall that the corresponding pdf for the Gaussian is

pGauss(x;µ, σ) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
.

We can visualize the difference between the Gaussian and Laplacian distributions by plotting
their pdfs (with mean 0 and variance/scale parameter of 1) below:

1The letter b is commonly used to denote the scale parameter of the Laplace distribution. It is unrelated to the
“bias” parameter b that we have used sometimes in linear and logistic regression.
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The Laplacian distribution has a sharp peak at 0 instead of a smooth hump, and it has larger
density than the Gaussian in the regions far away from 0 (sometimes referred to as “fatter
tails”).

Now let’s use the Laplace distribution as our noise model for regression. We will assume that
the examples are independently drawn from the distribution

p(y | x) = pLaplace(y;w
⊤x, b)

where b is some fixed constant. This says that y is a random variable centered around w⊤x
with noise distributed according to a Laplace distribution with scale parameter b. (In class, we
made the exact same assumption but with a Gaussian distribution)

(a) (3 points) We are given a training datasetD = {(x(1), y(1)), . . . , (x(n), y(n))} of (x, y) pairs.
Write down the equation for L(w), the likelihood of the the parameters w, assuming the
Laplacian noise model.

(b) (3 points) By the principle of maximum likelihood estimation, doing machine learning
here corresponds to finding w that maximizes L(w). Rewrite this as an optimization
problem where you minimize a loss function with respect to w. Make this loss function a
sum over the training examples. Simplify your expression as much as possible.

(c) (5 points) We want to learn w by gradient descent on this objective. Write the gradient
update rule for w. Your answer should be a formula for w(t), the current guess for w, in
terms of w(t−1), the previous guess for w. Use η to denote the learning rate.

(Note: Don’t worry too much about what happens if w⊤x = y exactly. You may use the
“sign” function sgn(z), which is 1 if z > 0, −1 if z < 0, and 0 if z = 0, i.e. it returns the
correct sign depending on whether z is positive or negative.)

(d) Let’s compare this update rule with the one for linear regression. For the first three sub-
parts, assume that we are doing a gradient update on the loss for a single training point,
(x, y).

i. (2 points) When the model’s prediction, w⊤x, is pretty close to y, will Laplacian
regression or standard linear regression make a larger update to w? (Assume we use
the same learning rate for both.)

ii. (2 points) If w⊤x is very far from y, will Laplacian regression or linear regression
make a larger update to w?
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iii. (2 points) Starting from the same w, will the gradient updates for Laplacian regression
and linear regression always go in the same direction? Why or why not?

iv. (2 points) Now suppose we do a gradient update on the entire training dataset, instead
of just a single example. Will the gradient updates for Laplacian regression and linear
regression always go in the same direction? Why or why not?

(e) (4 points) Suppose we are comparing two classifiers with weight vectors w and w̃. w makes
small errors on every training example. w̃ predicts perfectly on most training examples,
but has very high error on one training example. Your friend Gus decides to choose which
of w and w̃ is better by measuring the standard linear regression loss (based on Gaussian
noise), while your other friend Laura decides to compare them based on the Laplacian noise
loss you have derived. Who is likely to favor w, and who is likely to favor w̃? Explain
your reasoning.

Question 3: Linear Regression and Polynomial Features (23 points)
In this problem, we will implement linear regression and experiment see how different choices
of features influence training error and test error.

Before you get started, take a look at train.tsv. Each row is an x and y value separated by
a tab character. The dev.tsv and test.tsv files are structured similarly. The starter code
already provides code that reads these files into a numpy array.

Setup: For this question and the next question, you will need to first do the following:

1. Download hw1.zip from the course website and extract the files.

2. Install the required packages:

pip3 install -r requirements.txt

You may first need to install pip, the python package installer.

(a) (5 points) Implement linear regression using gradient descent. You will have to modify
the following functions:

• predict(w, X), which takes in a parameter vector w ∈ Rd and matrix X ∈ Rm×d for
any integer m, and returns a vector ŷ ∈ Rm consisting of the model’s prediction for
each row of X. For full credit, your solution should not use any for loops.

• train gradient descent(X train, y train), which takes in a training dataset con-
sisting of a matrix X ∈ Rn×d and vector y ∈ Rn, where n is the number of training
examples, d is the dimension of the feature vector for each example, and yi is the label
corresponding to the i-th row of X. The function returns a parameter vector w ∈ Rd

chosen by gradient descent. For full credit, your solution should only use a
single for loop. (Note: Yes, this is very similar to the demo from class.)

Now run the program to train on the training dataset and evaluate on the development
set:

python3 linreg.py -a gradient_descent

This code will return the root mean squared error (RMSE) over the development set, i.e.,
the square root of the average across the development set Ddev of the squared difference
between our prediction and the true value:√√√√ 1

|Ddev|
∑

(x,y)∈Ddev

(w⊤x− y)2.
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Note that this is the square root of the objective we use for training. In practice it can be
more intuitive to look at the RMSE because it is in the same “units” as the y’s (similar
to the difference between standard deviation and variance).

You should get a RMSE of roughly 0.9454 on the development set. Once your code passes
this sanity check, run on the test set by adding the --test flag to the python command.
Report the test set RMSE.

(b) (6 points) Recall that for linear regression, we can also directly compute the closed form
via the Normal Equations. Implement the function train normal equations(X train,

y train). Once you have done this, you can test your code by running:

python3 linreg.py -a normal

You should use the numpy.linalg.pinv function (it’s already been imported in the starter
code), which takes the pseudoinverse of a matrix. This should produce the same final
output as your gradient descent code.

(c) (4 points) Now we will see what happens when we add more features. Look at the
featurize(x, d=1) function. Currently, this function returns a list consisting of [1, x].
This corresponds to having a bias term (which you can think of as a 0-th degree polyno-
mial) and a linear term. To increase the expressivity of our model, let’s add monomial
features corresponding to higher-degree polynomials. Change this function so that when
provided d > 1, it returns the d+ 1-dimensional feature vector [1, x, x2, . . . , xd].

Now let’s try running linreg.py again with different values of d. Run the following
command:

python3 linreg.py -a normal -d 1:20

This will automatically try d = 1 through d = 20, printing the train and dev losses of
each. and plot the train and dev RMSE’s in a figure called rmse vs degree.png. Based
on these results, what is the optimal degree to use? Let’s call this degree d∗. Report d∗

and the test error when using d∗, and include the figure plotting RMSE vs.
Degree. (Note: You can also use --degree [d] to just run with a single degree instead
of trying a range.)

(d) (4 points) linreg.py accepts another flag called -n [n] which reduces the number of
training examples to n by just selecting the first n examples. This essentially allows us
to simulate what would happen if we only had a smaller training dataset. Re-run the
previous part with -n 100 and report all the same results (note that the full training set
has 1000 examples; also note that you may want to save the plot from the previous part
somewhere else so it doesn’t get overwritten). How do d∗ and the final test error change?
Explain why these changes make sense in 1-2 sentences.

(e) (4 points) linreg.py accepts one more flag called -p [d1,d2,d3] that takes in a comma-
separated list of degrees. It will plot the actual function that has been learned using
each degree in the list, along with the development set data, and write this plot to
predictions linreg.png. Run the following command, replacing d star with the d∗

you found in the previous part:

python3 linreg.py -a normal -d 1:20 -n 100 -p 1,2,d_star,20

In your report, include the resulting figure and comment on the four curves.
Does each curve appear to suffer from underfitting, overfitting, or neither? Explain your
answers.
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Question 4: Author Attribution with Naive Bayes (32 points)
In this question, you will build a Naive Bayes classifier to try to predict which famous author
wrote a given piece of text.

Our dataset consists of sentences taken from books written by four authors:

1. Jane Austen: Sense and Sensibility, Pride and Prejudice, Emma

2. Agatha Christie: The Murder of Roger Ackroyd, The Mysterious Affair at Styles, Poirot
Investigates

3. Herman Melville: Moby Dick, Typee, Omoo

4. William Shakespeare: Romeo and Juliet, Othello, A Midsummer Night’s Dream

The files nb train.tsv, nb dev.tsv, and nb test.tsv all contain examples sampled from the
12 books listed above; the examples were randomly partitioned into the train/dev/test splits.
Each row of each file contains an author (“austen”, “christie”, “melville”, or “shakespeare”),
the book (just for reference; we won’t use this in the code), and a passage that has been lower-
cased and split into space-separated words. Some minor preprocessing has been done, e.g.,
punctuation marks are considered their own words in this format.

We will use the Multinomial event model with Naive Bayes. Recall from lecture that in the
multinomial event model, we imagine a generative process in which a document consisting
of words x1, . . . , xm is generated one word at a time. Each word is sampled independently
from a multinomial distribution over the vocabulary of possible words (this is the Naive Bayes
assumption). We further assume that the word distribution for each position in the document
is the same, i.e., p(xj | y) is the same for all indices j.

(a) (15 points) Implement the Multinomial Naive Bayes model. This involves implementing
the following functions:

• get label counts(train data), which counts the number of examples that occur
with each label in the dataset.

• get word counts(train data), which counts the number of times each (word, label)
pair occurs in the dataset.

• predict(words, label counts, word counts, vocabulary), which makes a pre-
diction given an input consisting of words. Use Laplace Smoothing with λ = 1 when
making predictions. You only need to apply Laplace smoothing to your calculations
of P (xj | y), not to the prior distribution over P (y). Note: To prevent numerical
underflow, you will want to work in log space.

Once you have implemented these, run the following:

python3 naivebayes.py -e dev

to evaluate on the development set. You should get an accuracy of 96.493%. Once you pass
this sanity check, evaluate on the test set using -e test and report the test accuracy.

(Note: Our reference implementation takes about 15 seconds total to run on a three-year-
old laptop. If your implementation is considerably slower, consider if you can precompute
any quantities to make things run faster.)

(b) (2 points) Our classifier seems to work pretty well! Now let’s give it a harder test. Run the
same command but with -e newbooks. This will test on the data in nb newbooks.tsv,
which contains examples sampled from unseen books written by the same authors:
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1. Jane Austen: Persuasion

2. Agatha Christie: The Murder on the Links

3. Herman Melville: Pierre; or, The Ambiguities

4. William Shakespeare: Hamlet

What is the accuracy on this new dataset?

(c) (9 points) Our model’s accuracy dropped by a lot! To understand this, let’s try to under-
stand what our model has actually learned. In particular, one reasonable strategy is to
try to understand which features the model relies on most to make its predictions. In our
case, that means trying to understand which words are most strongly associated with a
particular label.

To do this, let’s imagine taking every individual word w in our dataset, and feeding it as the
input to the Naive Bayes model. (Essentially, we’re feeding in a “document” consisting
of a single word.) For any label ỹ, the Naive Bayes model can compute the posterior
probability P (y = ỹ | w). Recall that the formula for this is:

P (y = ỹ | w) = P (ỹ) · P (w | ỹ)∑
ŷ∈A P (ŷ) · P (w | ŷ)

where A is the set of authors (i.e., the set of possible labels). If this probability is large,
that is a sign that word w is strongly associated with label ỹ.

Write code in analyze counts(word counts, vocabulary) to find the top 10 words as-
sociated with each label, i.e., the ten w with the largest value of P (y = ỹ | w) for each
label ỹ. Print them out and report the list of words paired with the probability of the
associated label. Use the -a flag to cause the code to run analyze counts. What patterns
do you see? Comment on at least two different types of word-label associations. Finally,
comment on why your findings could explain the worse performance on new books.

(d) (3 points) We can also use this analysis to understand the effect of Laplace Smoothing.
Try repeating the previous part but without Laplace Smoothing. How do the values of
P (y = ỹ | w) change? What types of words now appear at the top? Why does that
happen?

(e) (3 points) For the last step in our investigation, let’s break down the errors per book. You
probably have noticed that after evaluating on the dev, test, or newbooks datasets, the
program spits out what’s known as a confusion matrix. Each row shows the examples cor-
responding to one true label, and each column shows how many times the model predicted
each label on that subset of the examples.

Based on the confusion matrix for the newbooks data, which of the four new books was
the hardest to classify? Why do you think this book was difficult for the model? (Hint:
It may help you to read up on what all the books are about.)
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