
USC CSCI 467
Intro to Machine Learning

Assignment 2
Due: March 2, 2023, 11:59pm

Spring 2023
Instructor: Robin Jia

This assignment has 4 questions, for a total of 100 points and 7 bonus points. Make sure you
also download the hw2.zip file from the course website.

When submitting on Gradescope, note that you must make a submission both for the
written portion and programming portion. For the programming portion, upload the files
regularization.py and neural.py with your completed solution. (There is an “autograder”
which will not actually grade your code but it will run it, and should return 0 if it encountered an
error and 100 otherwise.) Please still include the output of your code in the PDF report
when requested in the problems.

Question 1: Logistic Regression and Regularization (24 points)
In this problem, you will implement logistic regression with gradient descent, as well as L2
regularization. We will use the famous MNIST dataset, which has 28×28 images of handwritten
digits that must be classified into the digits 0 through 9. For this problem, we will focus on a
particular binary classification subtask—distinguishing 5’s and 8’s. 5’s will be our “negative”
class and 8’s will be our “positive” class. In the last problem, you will do the full 10-way
classification problem using neural networks.

(a) (3 points) Before you start, let’s get familiar with the data! The folder mnist sample

contains a sample of 5’s and 8’s from the dataset. Browse the images and note three
different ways in which examples within the same class differ. (Your observations may be
specific to one of the two classes.)

(b) (8 points) Now, it’s time to implement logistic regression. More specifically, your code
should run gradient descent on the loss function

L(w) =
1

n

n∑
i=1

− log σ
(
y(i) · w⊤x(i)

)
,

where n is the number of training examples and (x(i), y(i)) is the i-th training example.1

Here, each x(i) is simply the vector of pixels from the image, so it’s a 28 × 28 = 784-
dimensional vector.

Fill in the functions predict() and train(). As with HW1 Question 3, your code for
predict() should use no for loops, and your code for train() should only use a single for
loop. You should use the sigmoid() function that’s been imported from scipy,
as this will help avoid some numerical instability issues.

To test your code, run the following command:

python3 regularization.py

This will run logistic regression with the default settings, which uses no regularization and
trains for 10, 000 steps. You should reach training set accuracy of 1.0 and development
set accuracy of .9176.

1Note that we’ve added a 1/n factor compared to what I had in lecture; this is just to normalize the loss function
to be independent of the dataset size. Otherwise, when we do regularization, we would have to choose the λ’s to be
of the same order of magnitude as n.

This content is protected and may not be shared, uploaded, or distributed. Page 1 of 9

(Note: This took about 45 seconds on my 3.5-year-old laptop. If you want to check the
progress of training, you can print out the training loss every 100 steps, or use tqdm to
print a progress bar—just use tqdm(range(num iters)) in your for loop.)

(c) (5 points) Now, let’s add in L2 regularization. The full objective is now

L(w) =
1

n

n∑
i=1

− log σ
(
y(i) · w⊤x(i)

)
+

1

2
λ∥w∥2.

(Here we use a common version of L2 regularization that multiplies by 1/2; this will get
canceled with the 2 when we take a derivative.)

Add to your implementation in train() to use the l2 reg parameter. If l2 reg > 0,
then you should treat it as the λ in the above equation and apply L2 regularization.

You can pass in a value for L2 regularization on the command line with the --l2 [lambda]

flag. Let’s choose a good value of the hyperparmeter λ by trying different values and
measuring accuracy on the development set. To help you out, for each value of λ we try,
we’ve chosen a setting of learning rate (-r flag) and number of iterations (-T flag) that
will converge to the minimum.2 (In practice, you would treat learning rate and number
of iterations as hyperparameters and try different values, but we’ll just focus on choosing
the λ hyperparameter here.)

Try the following and report the training and development accuracy for each:

• λ = 1: --l2 1 -r 0.1 -T 1000

• λ = 0.1: --l2 0.1 -r 0.1 -T 2000

• λ = 10−2: --l2 1e-2 -r 0.5 -T 2000

• λ = 10−3: --l2 1e-3 -r 0.5 -T 5000

• λ = 10−4 : --l2 1e-4 -T 5000

To help you debug: For λ = 1 you should get a train accuracy of 0.9143.

(d) (2 points) Out of the values we tried, which value of λ had the best development set
accuracy? Report the test accuracy of the best λ by using the --test flag.

(e) (6 points) Finally, let’s visualize the learned weights. Since we learn one weight for each
pixel of the image, we can visualize the weights as an image!

Run the following commands:

python3 regularization.py --plot-weights no_reg

python3 regularization.py --l2 1e-2 -r 0.5 -T 2000 --plot-weights reg_1e-2

These will re-run training with no regularization and λ = 10−2, respectively, and save a
plot of the weights to plot no reg.png and plot reg 1e-2.png.

Comment on the following:

• How do the images differ in appearance?

• For the image with L2 regularization, what does the image tell you about what the
model is looking for? Think about what differentiates a 5 from an 8.

• How do the images differ in terms of the scale of the weights (notice the legend to the
right). Why does L2 regularization cause this difference?

2In case you’re wondering: adding L2 regularization to the objective generally makes it easier to optimize, because
the problem becomes strongly convex. This makes gradient descent converge faster even with a low learning rate.
With little or no regularization, we need a larger learning rate and more steps to get close to convergence.

This content is protected and may not be shared, uploaded, or distributed. Page 2 of 9

Question 2: Connecting Kernels and Features (25 points)
In class, we learned that kernels are motivated by two separate intuitions. First, kernels let
us think about model predictions in terms of similarity of the test example to each training
example. This is expressed through the kernel function k(x, z), which measures how similar
points x and z are. Second, kernels let us do efficient computations with very large, even
infinite-dimensional, feature vectors. This is because any valid kernel can be written in the
form

k(x, z) = ϕ(x)⊤ϕ(z)

for some function ϕ that takes in vectors in our original feature space and returns a (possibly
infinite-dimensional) vector in a new feature space. Running a kernelized algorithm, such as
kernel logistic regression, is mathematically equivalent to running the original algorithm in the
feature space defined by ϕ (although the runtime is very different).

In this problem, you will show how two popular kernel functions—the quadratic kernel and
radial basis function kernel—are equivalent to a particular choice of features ϕ. You will also
get some hands-on experience working with the quadratic kernel on a toy dataset.

(Note: Parts (b) and (c) of this problem involve a fair bit of arithmetic. You are encouraged
to write some simple code to do this arithmetic for you. Your solutions just need to describe
what computation you did, and what the result is.)

(a) (5 points) For x, z ∈ Rd, the quadratic kernel is defined as

k(x, z) = (x⊤z + 1)2.

Prove that when d = 2, k(x, z) = ϕ(x)⊤ϕ(z) where we define

ϕ(x) =

1√
2 · x1√
2 · x2
x21
x22√

2 · x1x2

(b) (5 points) Consider the following classification dataset of points in R2:

This content is protected and may not be shared, uploaded, or distributed. Page 3 of 9

The pluses are positive points; the circles are negative points.

Suppose we try to fit a linear classifier (e.g., standard logistic regression) that uses the
feature function ϕ defined in part (a). We are thus looking for a weight vector w ∈ R6.
Provide a possible value of w that would perfectly classify this data. (It does not have to
be the actual value of w learned by logistic regression, although it can be.) Then, open this
GeoGebra session https://www.geogebra.org/classic/ubfgwmbx and plot your decision
boundary (you can just start writing an equation in the panel on the left and it should
graph it). Include the image of your plot.

Hint: One way to perfectly separate the positive and negative points is with a decision
boundary shaped like a circle. Recall that the equation for the region inside of a circle in
the Cartesian plane of radius r centered at (x0, y0) is:

(x− x0)
2 + (y − y0)

2 ≤ r2.

Also note that for the purposes of plotting, x1 is on the x-axis and x2 is on the y-axis.

(c) Now suppose we run kernel logistic regression using the kernel described in part (a), on
the dataset from part (b). This means we will learn a vector a ∈ R5, since there are 5
training examples. Suppose further that we learn the vector

a =

−14
14
5
−1
−3

i. (2 points) The kernel matrix K is defined as the n× n matrix whose ij-th entry is

k(x(i), x(j)). Compute the 5× 5 kernel matrix for this problem.

ii. (5 points) Using the kernel matrix you computed, the model’s predicted score, i.e.

n∑
i=1

aik
(
x, x(i)

)

This content is protected and may not be shared, uploaded, or distributed. Page 4 of 9

https://www.geogebra.org/classic/ubfgwmbx

for each of the 5 training examples. Show that a perfectly classifies all 5 training
examples. For this part, do not convert a into the corresponding w vector.

iii. (3 points) Now compute the w that corresponds to this value of a. Report w to 1
decimal place in each component. Using the same GeoGebra link from part (b), plot
the decision boundary defined by this w, and include the picture here. What shape
does it have?

(d) (5 points) In class, I said that the Radial Basis Function (RBF) kernel corresponds to
an infinite-dimensional feature function. In this question, we will explicitly construct this
infinite-dimensional feature function, for the specific case where our original inputs x are
1-dimensional.

For 1-dimensional inputs, the RBF kernel is defined as

k(x, z) = exp

(
−(x− z)2

2σ2

)
where σ is a hyperparameter (also called the “bandwidth”). A large σ means that two
points are considered “similar” even if they’re somewhat far away, whereas a small σ means
that two are only considered “similar” if they’re very close to each other.

Prove that k(x, z) = ϕ(x)⊤ϕ(z) where we define

ϕ(x) = exp

(
− x2

2σ2

)
·
[
1,

x

σ
√
1!
,

x2

σ2
√
2!
,

x3

σ3
√
3!
,

]
.

Note that the left part is simply a scalar, and the right part is an infinite-dimensional(!)
feature vector.

Hint: You will need to use the fact that

ex =

∞∑
i=0

xi

i!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ · · ·

Question 3: Thinking like a Neural Network (22 points)
In class we discussed the notion that a neural network with two layers is a universal approxi-
mator. That is, given any function, you can create a two-layer neural network to approximate
it as well as you would like, as long as you can make the hidden layer as big as you’d like. In
this problem, you will try your hand at approximating a few functions in this way.

All parts of this problem work the same way. You are given a function f : Rd → {0, 1}, as well
as a domain X ⊆ Rd. You want to match f on the domain X with a two-layer neural network
classifier gθ(x) with parameters θ. More precisely, for every x ∈ X , you want gθ(x) > 0 if
f(x) = 1, and gθ(x) < 0 if f(x) = 0. In other words, gθ should be a perfect binary classifier
between points in X that have f(x) = 1 and points in X that have f(x) = 0. (Note that since
you only have to be a good approximation for points in X , this is easier than being a good
approximation for every x ∈ Rd.)

The parameters of your neural network are θ = (W, b, v, c) where W ∈ Rh×d, b ∈ Rh, v ∈ Rh,
and c ∈ R. h is the dimension of the hidden layer, which you can make as large as you would
like. W and b are the weight matrix and bias vector for the first layer; v and c are the weight
vector and bias for the second (final) layer. We will use the sigmoid activation function. Recall

This content is protected and may not be shared, uploaded, or distributed. Page 5 of 9

that σ(z) ≈ 1 when z is large and ≈ 0 when z is very negative. Putting this all together, the
neural network computes

gθ(x) = v⊤σ(Wx+ b) + c.

In each part, you should:

1. State your choice of h, W , b, v, and c. You can use the notation wi to denote the i-th row
of W (and thus wij is the j-th element of the i-th row). For parts (c) and (d), you may
write any of these in terms of d, the dimension of the input.

2. Prove that gθ(x) > 0 whenever f(x) = 1 and gθ(x) < 0 whenever f(x) = 0 for all x ∈ X .

To make these proofs a bit easier, you may use the approximation that σ(z) = 1 if z ≥ 10
and σ(z) = 0 if z ≤ −10.3 We recommend using the notation ai to denote the value (or
“activation”) of the i-th hidden unit, i.e. ai = σ(w⊤

i x+ bi).

If you are not sure where to get started, it may help to study the lecture slides where I showed
how to implement XOR with a neural network. The same ideas will be used in this problem.
It may also be helpful to draw out a diagram of the network to visualize what it is doing.

(a) (7 points) d = 3, and X is the set of 3-dimensional vectors where each entry is an integer.
f(x) returns 1 if at least one entry is ≥ 4, and 0 otherwise.

(b) (7 points) X is the set of 3-dimensional vectors where each entry is a positive integer. f(x)
returns 1 if the numbers {x1, x2, x3} are valid side lengths of a (non-degenerate) triangle,
and 0 otherwise.

Note: For 3 positive numbers to be possible side lengths of a non-degenerate triangle, it is
necessary and sufficient for them to satisfy the triangle inequality, a+ b > c, for all three
combinations of the three numbers.4 For example, {4, 7, 10} works because

• 4 + 7 > 10,

• 4 + 10 > 7, and

• 7 + 10 > 4,

whereas {4, 7, 12} does not.

(c) (8 points) X is the set of d-dimensional vectors where each entry is an integer. f(x)
returns 1 if at every entry is between −3 and 3 (inclusive), and 0 otherwise. (In other
words, f checks if x lies within or on the hypercube with side length 6 centered at the
origin.)

(d) (7 points (bonus)) X is the set of d-dimensional vectors where each entry is either 0 or 1.
f(x) returns 1 if the number of 1’s in x is odd, and 0 if the number of 1’s in x is even. (In
other words, f returns the XOR of the d entries in x.)

Question 4: Neural Networks for MNIST (29 points)
In this problem, we will again use the MNIST dataset we first saw in problem 1. Unlike in
problem 1, we will do the full 10-way classification problem of identifying handwritten digits
between 0 to 9. We will try a few different models: a linear model (softmax regression), a two-
layer and three-layer neural network (MLP), and finally a convolutional neural network. This

3In fact, σ(10) = 0.999955 and σ(−10) = 0.000045
4In a “degenerate” triangle, you could have a+ b = c; this means that the sides of the triangle are on top of each

other, e.g. think about {1, 1, 2}.

This content is protected and may not be shared, uploaded, or distributed. Page 6 of 9

will all be done using the popular Pytorch library.5 Pytorch syntax is reminiscent of numpy
syntax, except what numpy calls “arrays,” Pytorch calls “tensors.”

You should be able to install pytorch by running

pip3 install -r requirements.txt

using the requirements.txt file included in the starter code. This should install torch version
1.13.1+cpu. Note that very slight differences are unfortunately still possible between different
hardware.

Before you get started, take some time to read through the comments so you understand how
the code works. In particular, I have already implemented the training loop itself for you—this
is generic code for training models in Pytorch in general. The code runs stochastic gradient
descent for a fixed number of epochs (30 by default), and evaluates the training and dev
accuracy at the end of each epoch. The code also does a simple version of early stopping—it
keeps the model parameters from the epoch that had the highest dev accuracy, and sets those
as the final model parameters.

(a) (0 points) The SoftmaxRegression class has already been implemented for you as an
example. Note that implementing any pytorch model requires implementing two methods:

• init (self): This initializes the model. Here, you will define all the components
(i.e., “layers”) of the model. In this case, we only need a single linear layer, which you
create by calling nn.Linear(). A linear layer stores its own parameter weight matrix
and bias vector, which will get updated during training.

• forward(self, x): This is the code for the model’s forward pass—how it goes from
input x to the output. In this case, the only thing we need to do is apply the linear layer
to x. Note that the actual softmax loss function is computed in the training loop (by
nn.CrossEntropyLoss), so forward() only needs to compute the pre-softmax scores
for each class, also called the “logits.”

Train this linear model by running:

python3 neural.py linear

You should get a dev accuracy of .90871, which comes from checkpoint 23. It’s a bit better
than using the final checkpoint 29. If you don’t get these results, you may be on a different
Pytorch version.

(b) (5 points) Now implement TwoLayerMLP. Your model should do the following:

• Apply a linear layer that maps the input to a vector of size hidden dim (this is h from
lecture).

• Apply the ReLU nonlinearity to this vector.

• Apply a second linear layer that maps vectors of size hidden dim to vectors of size
NUM CLASSES.

A couple things to note:

• When you create a nn.Linear() object, it automatically randomly initializes the
parameters for you, so you don’t have to worry about doing the initialization yourself.

5https://pytorch.org/

This content is protected and may not be shared, uploaded, or distributed. Page 7 of 9

https://pytorch.org/

• You should use the torch function F.relu(), which comes from the torch.nn.functional
module. In general, torch.nn.functional6 implements many useful functions, in-
cluding other nonlinearities like sigmoid and tanh, as well as operators like max pool-
ing.

When you’re done, run your 2-layer MLP with:

python3 neural.py mlp2

After epoch 0, your dev accuracy should be .88704. Report the best epoch, and the
train and dev accuracy you got at that epoch.

(c) (3 points) Now let’s see how the size of the hidden layer h affects the model. Note that
the hidden layer can be as big or as small as we’d like. The code uses h = 200 by default,
but you can change this by using the -i [number] flag. Try h = 10, 20, 50, 100, 200, 500.
Report the following:

• The dev accuracy from the best checkpoint (i.e., from the best epoch) for each value
of h.

• How does dev accuracy change as you increase h?

• How does the runtime of the model change as you increase h?

(d) (4 points) Now, let’s try regularizing using Dropout. The init ()method for TwoLayerMLP
accepts an option called dropout prob which by default is 0, but can be any probability
between 0 and 1. This represents the probability of any neuron getting “dropped out” (i.e.,
set to 0) during training. Implement Dropout in TwoLayerMLP. In particular, you should
apply Dropout to the hidden layer, after the ReLU. You should create a nn.Dropout()

object in init (), then use it in forward().7

Once you’re ready, train the model with h = 200 and dropout of 0.5 by running the
following:

python3 neural.py mlp2 -p 0.5

Report the best epoch, and the train and dev accuracy you got at that epoch.
How does the final train accuracy and final dev accuracy compare with the model trained
without dropout?

(e) (6 points) Now let’s try adding another hidden layer. Implement ThreeLayerMLP with
dropout. This will be similar to TwoLayerMLP except we have now have a second hidden
layer, which takes in the input of the first hidden layer and produces a new set of hidden
units by applying another linear mapping followed by ReLU. The second layer is then fed
to the final layer to produce the logits. You should add dropout on both hidden layers.

When you’re done, run your 3-layer MLP with dropout 0.2:8

python3 neural.py mlp3 -p 0.2

After epoch 0, your dev accuracy should be .87495. Report the best epoch, and the
train and dev accuracy you got at that epoch. How does this compare with the
2-layer MLP with dropout in terms of both dev accuracy and runtime?

6https://pytorch.org/docs/stable/nn.functional.html
7https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html
8I found that lower dropout works a bit better for 3-layer MLP; this is the sort of thing you need to find out by

trying different values for the dropout probability.

This content is protected and may not be shared, uploaded, or distributed. Page 8 of 9

https://pytorch.org/docs/stable/nn.functional.html
https://pytorch.org/docs/stable/generated/torch.nn.Dropout.html

(f) (3 points) Finally, we will implement a convolutional neural network (CNN), which is
specially designed for images. Here, we will think of the input as a 1 × 28 × 28 tensor
(whereas previously we thought of the input as a 784-dimensional vector). The “1” denotes
the number of input channels. Since we have black/white images, there is just one input
channel; if we had color inputs, we would have 3 input channels for red, green, and blue.
Then 28× 28 is the width and height of the image.

You will use the following architecture:

• Apply a convolutional layer with kernel size 3 and producing 5 output channels (called
num channels in the code).

• Apply ReLu to this.

• Apply Max pooling with a kernel size of 2.

• Now “flatten” the resulting tensor into a single vector.

• Apply a single hidden layer to this vector, mapping it to a vector of size hidden dim.
This consists of a linear layer followed by ReLU

• Apply dropout to the output of this hidden layer

• Finally, apply a final linear layer to map the hidden units to logits.

Before we implement this, we should work out what dimension everything is. Answer the
following, assuming the input is a single 1× 28× 28 tensor:

• What is the shape of the output of the convolutional layer? Assume that the order of
the dimensions is (output channels, width, height).

• What is the shape of the output of max pooling?

• What is the input dimension of the hidden layer?

(g) (8 points) Now, go ahead and implement the architecture described above in the ConvNet
class. You will need to use the following:

• nn.Conv2d: A 2d convolutional layer.9 Like nn.Linear, it stores its own parameters.

• nn.MaxPool2d: A Max-pooling layer.10

• The .reshape() method, which allows you to take a tensor and reshape it into a
different tensor with the same total number of numbers. You can see that the starter
code takes the original input x, whose size is B × 784 (where B is batch size), and
reshapes it into a tensor whose shape is B × 1 × 28 × 28, which is suitable for being
the input to a Conv2d layer. You will also need to do a .reshape() in forward()

before the hidden layer.

When you’re ready, run your CNN model with dropout of 0.2:

python3 neural.py cnn -p 0.2

After epoch 0, your dev accuracy should be .90621.

Report the best epoch, and the train and dev accuracy you got at that epoch.
Finally, since this should perform the best out of all models, report the test accuracy by
running the same command with --test.

9https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
10https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

This content is protected and may not be shared, uploaded, or distributed. Page 9 of 9

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html

