

Someone gives us dataset
Learning algorithm has wo influence on what the dataset is "passive"

Bandits \&5
Reinforcement Looming
Learning algorithm takes actions:
(1) Influence what into is observed ic data
(2) Influence state of agent / would

Example: Students selecting lasses

- Action: choose a class to take
- Information: You learn whetter you like the class you take don't learn about other classes
X - State: Taking intro class unlucks more advanced cases
Bandits
- Taking action jives info only about that action
- No state changing between actions

Medicine K treat meat options for a condition w/ unknown effectiveness
patients core in ore at a time
Action: Prescribe one of K treatments
Information: Outcome of that patient
Early on, try all the freatments
Eventually learn which is best \& mostly prescribe that

News Headlines K headlines for arlide, wont people to did
Action: For each visitor to site, show 1 of the k headlines
Info: Did they click on article
Stochastic Multi-Armed Bandit, Problems
Rewards
one-armed bandit $=$ slot machine are K different slot machines, learn which random gives most \$\$
Set of actions $\{1, \ldots, k\}$ ("arms")
Each action a has reward, distribution of time
What payoff did you reaire?

- Health of patient after treatment
- Did person click or not (1 or 0)
(In bandits /RL we moxumuze reward and wot minimizing loss)
Player play this game for T rounds At each time $t=1, \ldots, T$:
- Player chooses action At Depends on
- Player receive reward $R i$

$$
\begin{array}{ll}
\text { receive reward } R_{t} \sim P_{A_{t}}(R) & R_{1, \ldots}, R_{t-1} \\
& \text { so } \\
\in \mathbb{R} & R_{t} \text { is } \\
\text { Random variable } & \text { also a } \\
& \text { total reword } \sum_{t=1}^{T} R_{t}
\end{array}
$$

Example

$$
K=2
$$

t	A_{t}	R_{t}
1	1	1
2	2	0
3	1	0
4	1	0
5	2	1
6	2	1
7	2	1

// Action 1 daters, leis try it more // maybe action 1 isht that good?

If $T=7$ then total reward $=4$
Regret: How well did your strategy do compared to the optimal strailegy

$$
\text { Define } N(a)=\underset{\substack{\text { expected reward } \\ \text { when choosing } \\ \text { action a }}}{\substack{\mathbb{E}} \underset{R}{\sim} \sim P_{a}(R)}[R]
$$

optimal action $a^{*}=\underset{a}{\operatorname{argmax}} N(a)$
Expected Regret: Expected difference between optimal strategy \& player's strategy

$$
\begin{aligned}
& { }_{\substack{\text { expected reward }^{\text {of optimal }}}}^{N\left(a^{*}\right) \cdot T}-\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]}_{\begin{array}{c}
\text { Expected reward } \\
\text { for plater }
\end{array}} \\
= & N\left(a^{*}\right) \cdot T-\sum_{t=1}^{T} N\left(A_{t}\right) \quad \text { Roget close to } 0 \text { good }
\end{aligned}
$$

Exploration Es Expoitedion
want to try all the actions enough times to learn which is better ie gain knowledge
that's useful later

- I want to try lots of subjects before specializing"
Algorithm: Upper Confidence Bound (UCB) AlGorithm
Idea:
- Player is estimating N(a) for every a
- Estimates are uncertain
\rightarrow we will represent this as a confidence interval "I think $N(a)$ is between 0.6 and 0.8 "
- At each t, choose action with largest upper bound

Why?: Optimism in the face of uncertainty
If a is action with Largest upper bound:
Either (it's actually good = very good news (2) It's not so good \Rightarrow can update Our estimates \& try something else

UCB Algorithm: Assume $0 \leq R_{t} \leq 1$
At time t_{1} bet $n_{t}(a)$ denote? \#of fines us tried a op until time t

$$
n_{8}(1)=3, \quad n_{8}(2)=4
$$

Let $\hat{N}_{t}(a)$ be sample mean of rewards when talking action a in the data before time t

$$
\hat{N}_{8}(1)=1 / 3, \quad \hat{N}_{8}(2)=3 / 4
$$

For $\cup C B$:
For action a, use confidence interval of $\pm \sqrt{\frac{2 \log t}{n_{t}(a)}}$
at time t

$$
\text { ie } \begin{aligned}
N(a) \in\left[\hat{N}_{t}(a)-\sqrt{\frac{2 \operatorname{logt}}{n_{t}(a)}}\right. & \left., \hat{N}_{t}(a)+\sqrt{\frac{2 \operatorname{lost}}{n_{t}(a)}}\right] \\
& =U C B_{t}(a)
\end{aligned}
$$

How much uncertainty is in a sample mean?
If n examples variance of sample mean

$$
=\frac{\sigma^{2}}{n} \leftarrow \text { vanouncot sample }
$$

\Leftrightarrow Standard deviation of sample mean is σ / \sqrt{n} order $1 / \sqrt{n}$

$$
\begin{aligned}
& \cup C B_{t}(a)=\hat{N}_{t}(a)+\left(\sqrt{\frac{2 \log t}{n_{t}(a)}}\right] \begin{array}{l}
\text { Gets smaller } \\
\text { as } n_{t}(a) \\
\text { gets larger }
\end{array} \\
& \text { "a Exploitation term is good if we think } \\
& \begin{array}{l}
\text { its reward is high" }
\end{array} \begin{array}{l}
\text { "a is useful if we } \\
\text { hovent tried if very } \\
\text { much yet" }
\end{array}
\end{aligned}
$$

Full algonithon:

1. For $t=1, \ldots, K$: try each action once
2. For $t=k+1, \ldots, T$: choose $A_{t}=\underset{a}{\operatorname{argmax}} U C B_{t}(a)$

What happens to over time?

Gets bigger over time
\Rightarrow UCB gets closer to \hat{N}
\Rightarrow do exploitation

Gets bigger over time very slowly
\Rightarrow we never completely role out an action. If $n_{t}(a)$ constant eventually this UCB gets large

Can prove a bound on Regret of $\triangle C B$
in partialar, Regret is $O(\sqrt{K T \log T})$
This is good because it's sublinear If we average across timesteps, average regret is $O\left(\frac{\sqrt{k T \log T}}{T}\right) \rightarrow 0$ as $T \rightarrow \infty$
After enough time, gap wi optimal Strategy is rogligible.

