

Casino dice game
Fair $\rightarrow$ Pail $\rightarrow$ Fair $\rightarrow$ loader L $\rightarrow L — L-L-F_{\text {air }}$ Fair state: Fair dice or loaded dice
$\begin{array}{lllllllllll}\downarrow & \downarrow & 1 & \downarrow & \jmath & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 2 & 5 & 3 & 6 & 6 & 4 & 6 & 6 & 1 & 2\end{array}$
Genomics
Coding CC N N N C C State: coding is nou-coding
$A T G G \subset A C A B C$ obsenations: DNA back pairs
Speech Recognition


HMM (formal): Probabilistic model of a sogrence of observations $x_{1}, \ldots, x_{T}$
(1) Sample $Z_{1}$ from prior distribution $\pi_{r: k}$ ( $k$ possible states)

$$
P\left(2_{1}=c\right)=\pi_{c}
$$

(2) For each $t=2, \ldots, T$ Represent os kxk matrix $A$
sample $z_{t}$ from $p\left(z_{t} \mid z_{t-1}\right)$
Markov Assumption:
$z_{t}$ only depends on $z_{t-1}$ not on ottar history
Also assume same transition probabilities (oe same A) at each time
(3) For each $t=1, \ldots, T$
sample $x_{t}$ from $p\left(x_{t} \mid z_{t}\right)$
Assume that $x_{t}$ only depends on $2_{t}$ (not past states or observations)
Assume emission distribution is same for all times $t$

Genomics: $p\left(x_{t} \mid 2_{t}\right)$ is distribution over $\{A, C, G, T\}$ for each value of $z_{t}$

Speech: $P\left(x_{t} \mid z_{t}\right)$ is Goussian in audio feature space

Inference in $\mathrm{HMMM}_{s} \quad z_{1}, \ldots z_{T}$

$$
x_{1}, \ldots, x_{T}
$$

Inferring values of latent variables given obsemations Assuming we know:
$\left.\begin{array}{ll}\text { (1) } \pi & \text { ie } P\left(z_{1}\right) \\ \text { (2) } A & \text { ie } P\left(z_{t}\left(z_{t-1}\right)\right. \\ \text { (3) } P\left(x_{t} \mid z_{t}\right)\end{array}\right]$ Next class: Learn these
Given observations $x_{1}, \ldots, K T$ we could ting to infer:
(A) Most likely sequence of $2_{1} \ldots 2_{T}$ eeg given audio, argmax $P\left(z_{1: T} \mid x_{1: T}\right)$ find most likely ZIT
sequence of words
(B) At a particular time $t$, what is distribution of $z_{t}$ ? $P\left(z_{t} \mid X_{1: T}\right)$ egg in casino, how likely was the player

A: Viterbi Algonthum

$$
\underset{z_{1: T}}{\operatorname{argmax}} P\left(z_{1: T} \mid x_{1: T}\right)=\underset{z_{1: T}}{\operatorname{argmax}} P\left(z_{1: T}, x_{1: T}\right)
$$

$$
z_{1: T}
$$

$$
\text { N } \quad 21: \pi
$$

Differ by frater of $P\left(X_{1, T}\right)$
Strategy: Dyncoric Programming

$$
m_{t j}=\max _{\substack{21: t \\ \text { where }}} P\left(z_{1: t}, x_{1: t}\right)
$$ upto time $t$ $z_{t}=j \quad$ where we end $\begin{array}{ll}z_{t}=j & \text { at state } j\end{array}$

$$
m_{t j}=\max _{i=1 \ldots, k} p\left(z_{t}=j \mid z_{t-1}=i\right) m_{t-1, i} p\left(x_{t} \mid z_{t}=j\right)
$$

$$
b_{t j}=\underset{i=1, \cdots k}{\operatorname{argmax}} P\left(z_{t}-j \mid z_{t-1}=i\right) m_{t-1, i} P\left(x_{t} \mid z_{t}=j\right)
$$

"backpointers"


Base case $t=1: \quad m_{1 j}=P\left(z_{1}=j\right) P\left(X_{1} \mid z_{1}=j\right) \forall j=$
For $t=2, \ldots, T$
Compute $m_{t j}$ given $\quad m_{t-1, j} \quad \forall j=1, \ldots, K$ and $b_{t j}$

At the end:
Best ending state $Z_{T}=\underset{j=1 . . k}{\operatorname{argmax}} m_{T j}$
extract best path by following $b_{t j}$ 's
(B) Inference on $z_{t}$

To infer $p\left(z_{t} \mid x_{1: t}\right)$
we need to reason about:

(2) How past in flurences $z_{t}$
(2) How $x_{t}$
(3)
(3) How $z_{t}$ effect future

$$
\begin{aligned}
& p\left(z_{t} \mid x_{1: T}\right)=\frac{p\left(z_{t}, x_{1: T}\right)}{p\left(x_{1: T}\right)}=\frac{p\left(x_{1: t}, z_{t}\right)}{p\left(x_{1}: \tau\right)} \\
& \text { Normaleiry constant. } \\
& \text { Compute numeration for ane choices of } z_{t} \text { compute } \\
& \text { rearsively }
\end{aligned}
$$

