
α-Recursion: Suppose we know $\alpha_{t-1}(i)=p\left(x_{1: t-1}, z_{t-1}=i\right)$
for every i
What is $\alpha_{t}(j)$ for all j marginalize ot

$$
\begin{aligned}
\alpha_{t}(j) & =\sum_{i=1}^{K} p\left(x_{1: t-1}, z_{t-1}=i\right) p\left(z_{t}=j \mid z_{t-1}=i\right) p\left(x_{t} \mid z_{t} \dot{=}\right) \\
& =\sum_{i=1}^{k} \alpha_{t-1}(i) \cdot A_{i j}-p\left(x_{t} \mid z_{t}=j\right)
\end{aligned}
$$

For $\beta_{t}(i)$: Compute it based on $\beta_{t+1}(i)$ for every i

All together: To infer $p\left(z_{t} \mid X_{1: T}\right)$
(1) Compute α_{t} 's and β_{t} 's rearsively
(2) Compute

$$
p\left(z_{t}=j \mid x_{1: t}\right)=\frac{\alpha_{t}(j) \beta_{t}(j)}{\sum_{i=1}^{K} \alpha_{t}(i) \beta_{t}(i)}
$$

Learning HMm parameters

Again EM
Idea of EM:. If we had

How to compote good parameters?

$$
p\left(z_{1}\right)=\left\{\begin{array}{l}
1 / 2 \text { if } z_{1}=1 \\
1 / 2 \text { if } z_{1}=2 \\
0 \\
\text { if } z_{1}=3
\end{array}\right.
$$

$$
p\left(x_{t}\left(z_{t}=1\right)\right.
$$

= Normal with $N=8$

$$
\sigma^{2}=6
$$

$p\left(x_{t} \mid z_{t}=2\right)=$
Nome with

$$
\begin{aligned}
& N \text { of } 1.4 \\
& \sigma^{2}=0.1
\end{aligned}
$$

Now' Suppose we dont know Zn's
E-step creates fictitious data (w/ smart guessing) M-step estimates prams on fictitious data
$p(2)$:
E-step: Compute $p\left(z_{1} \mid x_{1: T}\right)$ "prevdocounts"
Suppose you get: Sequence 1: $[0.2,0.7,0.1]$
Sequence 2: $\left[0^{+} .6,0^{+1}, 0.1\right]$

Pretend our data looks like
10 copies of Sequence 1 where 2 have $z_{1}=1$
7 have $z_{1}=2$
1 has $z_{1}=3$
(1) copies of Sequence 2 where - 6 have $z_{1}=1$

3 have $z_{1}=2$ has $2_{1}=3$
M-step (Estimate parameters)
Just treat this fictions data as real is count things to estimate parameters

$$
\begin{aligned}
& P\left(z_{1}=1\right)=8 / 20 \\
& P\left(z_{1}=2\right)=10 / 20 \\
& P\left(z_{1}=3\right)=2 / 20
\end{aligned}
$$

For emissions:
E-step: Infer $p\left(z_{t} \mid x_{1}: T\right)$ for every t
Suppose for sane $t, x_{t}=1.7$

$$
p\left(z_{t}\left(x_{1: T}\right)=[.7, .1, \quad .2]\right.
$$

Then we have .7 "counts" of $\left(z_{1}=1, x_{t}=1.7\right)$

$$
\begin{aligned}
& .1 \text { "counts" of }\left(2=2, x_{t}=1.7\right) \\
& .2 \text { "counts" of }\left(2=-3, x_{t}=1.7\right)
\end{aligned}
$$

Transitions:
Este: We want pserdocounts of how man times State $i \rightarrow$ state j

$$
p\left(z_{t-1}, z_{t} \mid x_{1 . T}\right)
$$

Based on observations, which pairs $\left(z_{t-1}, z_{t}\right)$

$$
\begin{array}{r}
\frac{p\left(z_{t-1}, z_{t,}, x_{1: T}\right)}{}=p\left(x_{1: t} \mid, z_{t-1}\right) \cdot p\left(x_{t+1: T} \mid z_{t}\right) \\
\alpha_{t-1}\left(z_{t-1}\right) \\
\cdot p\left(z_{t} \mid z_{t-1}\right)
\end{array} \quad p\left(x_{t} \mid z_{t}\right) .
$$

Then normalize over all pairs of $\left(2_{t-1}, 2_{t}\right)$
M-stap: Use these pserdocounts to estimate transition probabilities
Announcements

- HW3 stater code
- Section: Neoral network opAmizers variants of SGD

$$
\begin{aligned}
& P\left(z_{t,}, x_{1: T}\right)=P\left(z_{t, T} x_{1: t}, \sqrt{x_{t+1: T}}\right) \\
& P(\underbrace{\left.z_{t, x_{1: t}}\right)}_{A} \cdot P(\underbrace{x_{t+1: T}}_{B} \mid \underbrace{z_{t, 1} x_{1: t}}_{A}) \\
& =P\left(z_{t}, x_{1: t}\right) \cdot P\left(x_{t+1: T} \mid z_{t}\right)
\end{aligned}
$$

Dimensionality Reduction

Clustering

points in \mathbb{R}^{2} but a single line captors val of information

Dimensionality Reduction
Given $\left\{x^{(n)}, \ldots, x^{(n)}\right\} \in \mathbb{R}^{d}$
Find a lower-dimensional subspace that preservest most of the information
Method: Principal Component Atralysis (PCA)
For now: want to find a good 1-D projection Key assumption: Data has mean O

LIn practice: compote mean of the data \&f subtract it away

Parameter $\omega \in \mathbb{R}^{d}$ that defines the 1-D subspace

$$
\|w\|=1
$$

What coss function describes a "good" choice of w ?
Reconstruction Error

$$
\begin{aligned}
& \sum_{i=1}^{n} \| x^{(i)}-\underbrace{\operatorname{Proj}}_{\text {projection onto } w}\left(x^{(i)}\right. \\
= & \sum_{i=1}^{n}\left\|x^{(i)}-\left(\omega^{\top} x^{(i)}\right) \cdot \omega\right\|^{2}
\end{aligned}
$$

PCA chooses ω to minimize this loss function $\quad \cos \theta=\frac{\omega^{\top} x}{\|x\|\|\omega\|}$

$$
\begin{aligned}
& \cos \theta=\frac{\omega^{\top} x}{\|x\|\|\omega\|} \\
& \cos \theta=\frac{\omega^{\top} x}{\left\|\omega_{0}\right\|}=\omega^{\top} x
\end{aligned}
$$

Equivalent view:
Maximize variance of points after projection
By Pythagorean Theorem:
suncul recon. err $=$ good
Large recon error = bad

$$
\underset{\text { maximise }}{ } \underset{\text { this }}{\left(W^{\top} x\right)^{2}}+\underset{\substack{\text { minimize }}}{\operatorname{Recon} E r r o r}=\underbrace{\|x\|^{2}}_{\text {Fixed }}
$$

maximize $\sum_{i=1}^{n}\left(w^{\top} x^{(i)}\right)^{2}$
$\frac{1}{n} \sum_{i=1}^{n}\left(w^{\top} x^{(i)}\right)^{2}$ is just variance of $w^{\top} x$

