2/912023: Kernels (Past 2)
inputs to predictor
$K(\stackrel{\downarrow}{x}, 2)$ measures similarity between $x \& 2$
Kernel function

- Similar $x \otimes 2$ should have large $k(x, 2)$

Logistic Regression is already computing
prediction given input $x$ based on

$$
\sum_{i=1}^{n} a_{i} k\left(x, x^{(i)}\right) \quad 0_{\text {If }}>0 \quad \text { predict +1 }
$$

If we define $k(x, z)=x^{\top} 2$
5 For each training example, compute its similarity to $x$
Q multiply by a learned weight ai
Original logistic Regreersian

1) Training: $\omega^{(t)} \leftarrow \omega^{(t-1)}+2 \sum_{i=1}^{n} \sigma\left(-y^{(i)} \omega^{(t-1) \tau} x^{(i)}\right) y^{(i)} \cdot x^{(i)}$

For example: $+0.7 x^{(1)}-0.3 x^{(2)}+0.2 x^{(3)}$
$(n=3)$

$$
(n=3)
$$

2) Testing: we compute $w^{\top} x$

Herne logistic Ragrecrion (Equivalent mathematically)
Define $a \in \mathbb{R}^{n}, \omega=\sum_{i=1}^{n} a_{i} x^{(i)^{n}}$

1) Training: $a_{i}^{(t)} \leftarrow a_{i}^{(t-1)}+\eta \cdot \sigma\left(-y^{(i)} \sqrt{(t-1) T} x^{(i)}\right) \cdot y^{(i)}$

$$
\begin{aligned}
& a_{i \in}^{(t)} \leftarrow a_{1}^{(t-1)}+0.7 \uparrow \\
& \begin{array}{l}
c_{2}^{(E)} \leftarrow a_{2}^{(E-1)}-0.3 \\
c_{3}^{(t)} \leftarrow a_{3}^{(t-1)}+0.2
\end{array}=\sum_{j=1}^{n} a_{j} x^{(j) T} x^{(i)} \\
& =a i^{(\epsilon-)}+\eta \cdot 6\left(-y^{(i)} \sum_{j=1}^{n} a_{j}^{(t-1)} k\left(x^{(j)}, x^{(i)}\right)\right)_{x^{\prime} s}^{k} \cdot y^{(i)}
\end{aligned}
$$


Big payoff: we can son kernelired algonthm with any chare of Kernel function

Radial Basis Function (RBF)

$$
k(x, z)=\exp \left(-\frac{\|x-z\|^{2}}{\frac{2 \sigma^{2}}{\uparrow}}\right)
$$



In practice, RBF is a very popular way to learn now-linear decision boundary.

Kernels © Features

call this franformation $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{6}$
We can run normal logistic Regression with $\phi$.
but it would take $3 x$ long
Idea: "Kernel trick"
Use a kernelized aborthm, so

$$
K(x, z)=\phi(x)^{\top} \phi(z)
$$

In many cases, can compute this directly lie without creating $\phi(x)$ and $\phi(z)$

Polynomial (Kernel for degree 2 (Quadratic Kernel)

$$
K(x, z)=\left(x^{\top} z+1\right)^{2}=\phi(x)^{\top} \phi(2)
$$

when $\phi(x)=\left[\begin{array}{cc}1 & \\ \sqrt{2} & x_{1} \\ \sqrt{2} & x_{2} \\ x_{1}{ }^{2} \\ & x_{2}{ }^{2} \\ \sqrt{2} & x_{1} x_{2}\end{array}\right]$
You can compute $\phi(x)^{\top} \phi(2)$ without "running" $\phi$

In general, for any orignal dimesion of $x$ 's for any degree $P$ hypapparameter

$$
k(x, z)=\left(x^{\top} z+1\right)^{p}=\phi(x)^{\top} \phi(2)
$$

for some $\phi$ that has all monomials of degree $\leq P$
What about RBF?
Fact'.

$$
\exp \left(\frac{-\|x-2\|^{2}}{2 \sigma^{2}}\right)=\phi(x)^{\top} \phi(2)
$$

for some $\oint(x)$ that is infinite dimensional.
Kernel logistic regression + RBF (doable)
equiment to
logistic regression $+D$-dimensional features (not doable)
Runtione Considerations: Polynomine kernel, degree $P$, original dimension
Original: Titerations, each $O\left(n \cdot \frac{d^{p}}{a}\right)$ is $d$

Kevel: T iterations, each $O\left(n^{2} d\right)$ compacting
Kernel pay $O\left(x^{2}\right)$, but enables using more features at no additional cost

