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Outline

• Loose ends
• How does backprop learn features?

• Visualizing CNN features

• Recurrent Neural Networks for sequential data

• Sequence-to-sequence and Attention
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How does backprop learn features?

• Every convolution & fully connected layer has (many) parameters
• Convolutional: Kernel with #outChannels x (#inChannels x K x K + 1) params
• Fully connected: #outDimensions x (#inDimensions + 1) params

• These all have to get learned by backprop + gradient descent on the loss
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How does backprop learn features?

• Training example (x(1), y(1)): ∂(Loss)/∂(h)> 0
• Means that making h smaller leads to lower loss

• Training example (x(2), y(2)): ∂(Loss)/∂(h) < 0
• Means that making h larger leads to lower loss
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• h is output of “classifier”
• Gradient tunes classifier 

parameters to make output 
larger on some examples, 
smaller on others

Hidden unit h



How does backprop learn features?

• Backpropagation: Does making c bigger change h in good or bad way?

• Sum up these considerations over all hidden units that depend on c

• Train convolutional kernel parameters so that value of c leads to [values of h’s that lead to 
good outputs]

• And so on for earlier layers…
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Hidden unit h
Output of 

convolution c



What features do CNNs learn?

• Kernels of AlexNet first layer
• Each one is 3 (for RGB) x 11 x 11

• What is learned?
• Edge detectors in different 

directions and widths

• Patches of various colors
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What features do CNNs learn?

Each Row: Images that activate a different neuron in 5th POOL layer of AlexNet
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Faces

Dogs (eyes?)

Red ornaments/
flowers

Text (years?)

Houses

Lens flare?



Outline

• Loose ends
• How does backprop learn features?

• Visualizing CNN features 

• Recurrent Neural Networks for sequential data

• Sequence-to-sequence and Attention
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Note: Often there are many similar ways to achieve similar results
No one way of modeling is “correct”

I want you to remember the modeling ideas/concepts



Handling textual data

• Images: We assume inputs are fixed dimensional
• Can crop/rescale as needed

• Text: Inputs are naturally variable-sized!
• Example 1: Amazing!

• Example 2: There are many issues with this movie, such as…

• Challenge: How can we use the same set of model parameters to
handle inputs of any size?
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Recurrent Neural Networks (RNNs)

• Idea: Recurrence!
• “Read” the input one word at a time

• At each step, update the hidden state of the network

• Model parameters to do this update are same for each step
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Hidden
state h1

Hidden
state h2

Hidden
state h3

…

Final hidden
state hT

To be or question

Initial hidden
state h0

Each step is an application of 
the same neural network

Output



Word Embeddings

• How do we “feed” the next 
word to the RNN?

• Want to learn a vector that 
represents each word
• For each word w in 

vocabulary V, have vector vw

of size d

• |V| * d parameters needed

• Intuition: Similar words get
similar vectors
• More on learning word 

vectors later in the class!
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One RNN variant

• At each timestep t, run a neural network that takes in 2 inputs 
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0, word vectors
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…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Initial hidden
state h0

Output

Linear 
function of 

prev. hidden 
state

Linear 
function of 

current word 
vector

Same W’s & b for each timestep

question



Recurrence vs. Depth

• Deep networks (i.e., adding more layers)
• Computation graph becomes longer
• Number of parameters also grows; each step uses new parameters

• Recurrent neural networks
• Computation graph becomes longer
• Number of parameters fixed; each step uses same parameters
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Final layer

Input x

First hidden 
layer z(1)

Output y

Second hidden 
layer z(2)

Third hidden
layer z(3)



Recurrence and Depth

• You can have multiple 
layers of recurrence 
too!
• Left-to-right axis (“time 

dimension”): Length is 
size of input, same 
parameters in each 
step

• Top-to-bottom axis 
(“depth dimension”): 
Length is depth of
network, different
parameters in each row
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…

To be or question

h1
(1)h0

(1) h2
(1) h3

(1) hT
(1)

…h1
(2)h0

(2) h2
(2) h3

(2) hT
(2)

Layer 1

Layer 2



Announcements

• HW2 due this Thursday
• Pytorch not reproducible across different hardware

• Still used in assignment as it is very widely used for deep learning

• Ultimately we will grade by reading your code, not by checking if your 
numbers in the write-up are “correct”

• Proposals should be returned with feedback by Thursday

• Tuesday, March 7: Discussion of Midterm Report due March 23

• Section canceled March 10
• We will stop doing HW review sections, as they seem less popular

• Please still come to OH if you want clarifications on old HW problems
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Outline

• Loose ends
• How does backprop learn features?

• Visualizing CNN features (cat neuron?)

• Recurrent Neural Networks for sequential data

• Sequence-to-sequence and Attention
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How to use RNNs?

• Language modeling/text generation (“Decoder only”)

• Text classification (“Encoder only”)

• Sequence-to-sequence (“Encoder-decoder”)
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Language Modeling (“Decoder only”)

• At each step, predict the next word given current hidden state
• Essentially a softmax regression “head”—takes in hidden state, outputs distribution over Vocabulary + [END]

• Start with special [BEGIN] token (so the first word model generates is first real word)
• One step’s output becomes next step’s input (“autoregressive”)
• To mark end of sequence, model should predict the [END] token
• Called a “Decoder” because it looks at the hidden state and “decodes” the next word
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…

[BEGIN] To be question

h1
h2 h3 hTh0

To be or [END]
Softmax
Regression-style 
classification over 
Vocabulary + [END]



Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies
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The keys to the cabinet ___ (on the table)
plural singular



Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies
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The keys to the cabinet are (on the table)
plural singular



Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies
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The keys to the cabinet by the door are (on the table)



Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies
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The keys to the cabinet by the door on the left are (on the table)



Advanced RNNs

• “Gated” RNNs (GRUs, LSTMs)
• Better at holding on to long-range state

• These are usually preferable to the RNN variant I showed today

• They work the same way, but the recurrence relationship between previous 
hidden state and next hidden state is more complicated…
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What do RNNs learn?

• Here: a 
character-level 
model (not 
word-level)

• Blue/Green:
Low/high
values of 1
neuron

• Below: Top-5 
predictions for 
next character

• This neuron 
seems to detect 
whether we’re 
inside a URL
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What do RNNs learn?

• Here: a character-
level model (not 
word-level)

• Blue/Green:
Low/high values
of 1 neuron

• Below: Top-5 
predictions for 
next character

• This neuron fires 
only inside a 
Markdown [[link]] 
(so it knows 
when to close the 
square brackets?)
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Text classification (“Encoder only”)

• First run an RNN over 
text

• Use the final hidden 
state as an “encoding” 
of the entire sequence

• Use this as features,
train a classifier on top

• Downside: Later words 
processed better than 
early words (long range 
dependency issues)
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…

To be or question

h1
h2

h3 hTh0

Classification 
layer goes here

Output



Bi-directional encoders

• Run one RNN left-to-right, 
and another one right-to-left
• (I’ll call forward-direction 

hidden states ft, backward-
direction hidden states bt)

• Concatenate the 2 final
hidden states as final 
representation
• Note: This encoding is twice 

as large now—we’ve doubled 
the number of features 
passed to the final classifier
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…

To be or question

f1 f2
f3 fTf0

…bT
bT-1 bT-2 b1 b0

Concatenate & feed to 
classification head



Sequence-to-sequence (“Encoder-decoder”)

• Example: Machine 
Translation
• Input = English text
• Output = Spanish text

• Encoder: Process English 
sentence into vector
• E.g. Bidirectional encoder

+ MLP layer to generate
decoder’s initial state

• Decoder: Use vector as
initial hidden state and
start doing language
modeling in Spanish

• Vector space acts as a 
“shared language”
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I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]



What’s missing? Alignment

• Challenge: The single 
encoder output has to
store information about 
the entire sentence in a 
single vector

• Would be much easier if 
we can “refer to our 
notes”

• Traditional MT: 
Alignment between input 
& output sentences

• Can we get a neural 
network to model 
alignments?
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I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]



Attention
• Compute similarity between decoder 

hidden state and each encoder hidden 
state
• E.g., dot product, if same size

• Normalize similarities to probability
distribution with softmax

• “Context” vector c = weighted average 
of encoder states based on the 
probabilities 
• No new parameters (like ReLU/max pool)

• Use c when computing decoder outputs 
or transitions

• Intuition
• Step 1: Find similar input words
• Step 2: Grab the encoder representation

of those words

• Step 3: Tell the decoder that this is 
relevant
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I am hungry

f1 f2
f3

[BEGIN] Tengo hambre

h1 h2
h3h0

b3
b2 b1

2 1.5 -1

.6 .39 .01 Normalize to probability 
distribution w/ softmax

= .6
f1

b3
+.39

f2

b2

f3

b1
+.01c



Visualizing attention

• Source is English, Target is
French

• Each row is a probability
distribution over the English text

• Alignment makes sense, 
overcomes word order 
differences
• When generating “économique” 

attend to “Economic”

• When generating “européenne” 
attend to “European”
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Conclusion

• Deep Learning for Language must deal with possibly long inputs

• RNNs handle arbitrarily long inputs with fixed number of
parameters

• Challenges
• Long range dependencies

• Modeling alignments between input and output sequences

• Next time: Can Attention solve everything?
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