
Deep Learning for Language:
Recurrent Neural Networks,
Attention

Robin Jia
USC CSCI 467, Spring 2023

February 28, 2023

Outline

• Loose ends
• How does backprop learn features?

• Visualizing CNN features

• Recurrent Neural Networks for sequential data

• Sequence-to-sequence and Attention

2

How does backprop learn features?

• Every convolution & fully connected layer has (many) parameters
• Convolutional: Kernel with #outChannels x (#inChannels x K x K + 1) params
• Fully connected: #outDimensions x (#inDimensions + 1) params

• These all have to get learned by backprop + gradient descent on the loss

3

How does backprop learn features?

• Training example (x(1), y(1)): ∂(Loss)/∂(h)> 0
• Means that making h smaller leads to lower loss

• Training example (x(2), y(2)): ∂(Loss)/∂(h) < 0
• Means that making h larger leads to lower loss

4

• h is output of “classifier”
• Gradient tunes classifier

parameters to make output
larger on some examples,
smaller on others

Hidden unit h

How does backprop learn features?

• Backpropagation: Does making c bigger change h in good or bad way?

• Sum up these considerations over all hidden units that depend on c

• Train convolutional kernel parameters so that value of c leads to [values of h’s that lead to
good outputs]

• And so on for earlier layers…

5

Hidden unit h
Output of

convolution c

What features do CNNs learn?

• Kernels of AlexNet first layer
• Each one is 3 (for RGB) x 11 x 11

• What is learned?
• Edge detectors in different

directions and widths

• Patches of various colors

6

What features do CNNs learn?

Each Row: Images that activate a different neuron in 5th POOL layer of AlexNet

7

Faces

Dogs (eyes?)

Red ornaments/
flowers

Text (years?)

Houses

Lens flare?

Outline

• Loose ends
• How does backprop learn features?

• Visualizing CNN features

• Recurrent Neural Networks for sequential data

• Sequence-to-sequence and Attention

8

Note: Often there are many similar ways to achieve similar results
No one way of modeling is “correct”

I want you to remember the modeling ideas/concepts

Handling textual data

• Images: We assume inputs are fixed dimensional
• Can crop/rescale as needed

• Text: Inputs are naturally variable-sized!
• Example 1: Amazing!

• Example 2: There are many issues with this movie, such as…

• Challenge: How can we use the same set of model parameters to
handle inputs of any size?

9

Recurrent Neural Networks (RNNs)

• Idea: Recurrence!
• “Read” the input one word at a time

• At each step, update the hidden state of the network

• Model parameters to do this update are same for each step

10

Hidden
state h1

Hidden
state h2

Hidden
state h3

…

Final hidden
state hT

To be or question

Initial hidden
state h0

Each step is an application of
the same neural network

Output

Word Embeddings

• How do we “feed” the next
word to the RNN?

• Want to learn a vector that
represents each word
• For each word w in

vocabulary V, have vector vw

of size d

• |V| * d parameters needed

• Intuition: Similar words get
similar vectors
• More on learning word

vectors later in the class!

11

One RNN variant

• At each timestep t, run a neural network that takes in 2 inputs
(or 1 big input, by concatenation)
• Previous hidden state ht-1

• Vector for current word xt

• Learn linear function of both inputs, add bias, apply non-linearity
• Parameters: Recurrence params (Wh, Wx, b), initial hidden state h0, word vectors

12

…

To be or

Hidden
state h1

Hidden
state h2

Hidden
state h3

Final hidden
state hT

Initial hidden
state h0

Output

Linear
function of

prev. hidden
state

Linear
function of

current word
vector

Same W’s & b for each timestep

question

Recurrence vs. Depth

• Deep networks (i.e., adding more layers)
• Computation graph becomes longer
• Number of parameters also grows; each step uses new parameters

• Recurrent neural networks
• Computation graph becomes longer
• Number of parameters fixed; each step uses same parameters

13

Final layer

Input x

First hidden
layer z(1)

Output y

Second hidden
layer z(2)

Third hidden
layer z(3)

Recurrence and Depth

• You can have multiple
layers of recurrence
too!
• Left-to-right axis (“time

dimension”): Length is
size of input, same
parameters in each
step

• Top-to-bottom axis
(“depth dimension”):
Length is depth of
network, different
parameters in each row

14

…

To be or question

h1
(1)h0

(1) h2
(1) h3

(1) hT
(1)

…h1
(2)h0

(2) h2
(2) h3

(2) hT
(2)

Layer 1

Layer 2

Announcements

• HW2 due this Thursday
• Pytorch not reproducible across different hardware

• Still used in assignment as it is very widely used for deep learning

• Ultimately we will grade by reading your code, not by checking if your
numbers in the write-up are “correct”

• Proposals should be returned with feedback by Thursday

• Tuesday, March 7: Discussion of Midterm Report due March 23

• Section canceled March 10
• We will stop doing HW review sections, as they seem less popular

• Please still come to OH if you want clarifications on old HW problems

15

Outline

• Loose ends
• How does backprop learn features?

• Visualizing CNN features (cat neuron?)

• Recurrent Neural Networks for sequential data

• Sequence-to-sequence and Attention

16

How to use RNNs?

• Language modeling/text generation (“Decoder only”)

• Text classification (“Encoder only”)

• Sequence-to-sequence (“Encoder-decoder”)

17

Language Modeling (“Decoder only”)

• At each step, predict the next word given current hidden state
• Essentially a softmax regression “head”—takes in hidden state, outputs distribution over Vocabulary + [END]

• Start with special [BEGIN] token (so the first word model generates is first real word)
• One step’s output becomes next step’s input (“autoregressive”)
• To mark end of sequence, model should predict the [END] token
• Called a “Decoder” because it looks at the hidden state and “decodes” the next word

18

…

[BEGIN] To be question

h1
h2 h3 hTh0

To be or [END]
Softmax
Regression-style
classification over
Vocabulary + [END]

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

19

The keys to the cabinet ___ (on the table)
plural singular

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

20

The keys to the cabinet are (on the table)
plural singular

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

21

The keys to the cabinet by the door are (on the table)

Long-Range Dependencies

• Every step, you update the hidden state with the current word

• Over time, information from many words ago can easily get lost!

• This means RNNs can struggle to model long-range dependencies

22

The keys to the cabinet by the door on the left are (on the table)

Advanced RNNs

• “Gated” RNNs (GRUs, LSTMs)
• Better at holding on to long-range state

• These are usually preferable to the RNN variant I showed today

• They work the same way, but the recurrence relationship between previous
hidden state and next hidden state is more complicated…

23

What do RNNs learn?

• Here: a
character-level
model (not
word-level)

• Blue/Green:
Low/high
values of 1
neuron

• Below: Top-5
predictions for
next character

• This neuron
seems to detect
whether we’re
inside a URL

24

What do RNNs learn?

• Here: a character-
level model (not
word-level)

• Blue/Green:
Low/high values
of 1 neuron

• Below: Top-5
predictions for
next character

• This neuron fires
only inside a
Markdown [[link]]
(so it knows
when to close the
square brackets?)

25

Text classification (“Encoder only”)

• First run an RNN over
text

• Use the final hidden
state as an “encoding”
of the entire sequence

• Use this as features,
train a classifier on top

• Downside: Later words
processed better than
early words (long range
dependency issues)

26

…

To be or question

h1
h2

h3 hTh0

Classification
layer goes here

Output

Bi-directional encoders

• Run one RNN left-to-right,
and another one right-to-left
• (I’ll call forward-direction

hidden states ft, backward-
direction hidden states bt)

• Concatenate the 2 final
hidden states as final
representation
• Note: This encoding is twice

as large now—we’ve doubled
the number of features
passed to the final classifier

27

…

To be or question

f1 f2
f3 fTf0

…bT
bT-1 bT-2 b1 b0

Concatenate & feed to
classification head

Sequence-to-sequence (“Encoder-decoder”)

• Example: Machine
Translation
• Input = English text
• Output = Spanish text

• Encoder: Process English
sentence into vector
• E.g. Bidirectional encoder

+ MLP layer to generate
decoder’s initial state

• Decoder: Use vector as
initial hidden state and
start doing language
modeling in Spanish

• Vector space acts as a
“shared language”

28

I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]

What’s missing? Alignment

• Challenge: The single
encoder output has to
store information about
the entire sentence in a
single vector

• Would be much easier if
we can “refer to our
notes”

• Traditional MT:
Alignment between input
& output sentences

• Can we get a neural
network to model
alignments?

29

I am hungry

f1 f2
f3f0

b3
b2 b1 b0

Concatenate +
MLP layer

[BEGIN] Tengo hambre

h1 h2
h3h0

Tengo hambre [END]

Attention
• Compute similarity between decoder

hidden state and each encoder hidden
state
• E.g., dot product, if same size

• Normalize similarities to probability
distribution with softmax

• “Context” vector c = weighted average
of encoder states based on the
probabilities
• No new parameters (like ReLU/max pool)

• Use c when computing decoder outputs
or transitions

• Intuition
• Step 1: Find similar input words
• Step 2: Grab the encoder representation

of those words

• Step 3: Tell the decoder that this is
relevant

30

I am hungry

f1 f2
f3

[BEGIN] Tengo hambre

h1 h2
h3h0

b3
b2 b1

2 1.5 -1

.6 .39 .01 Normalize to probability
distribution w/ softmax

= .6
f1

b3
+.39

f2

b2

f3

b1
+.01c

Visualizing attention

• Source is English, Target is
French

• Each row is a probability
distribution over the English text

• Alignment makes sense,
overcomes word order
differences
• When generating “économique”

attend to “Economic”

• When generating “européenne”
attend to “European”

31

Conclusion

• Deep Learning for Language must deal with possibly long inputs

• RNNs handle arbitrarily long inputs with fixed number of
parameters

• Challenges
• Long range dependencies

• Modeling alignments between input and output sequences

• Next time: Can Attention solve everything?

32

