
Modern Deep Learning:
Transformers, Pre-training

Robin Jia
USC CSCI 467, Spring 2023

March 2, 2023



Review: Bi-directional RNN encoders

• Run one RNN left-to-right, 
and another one right-to-left
• (I’ll call forward-direction 

hidden states ft, backward-
direction hidden states bt)

• Result: Forward and 
backward encodings of 
each token in context
• Can just use the final 2 

hidden states as features

• Can use these as vectors to 
run attention over

2

…

To be or question

f1 f2
f3 fTf0

…bT
bT-1 bT-2 b1 b0



Review: Attention (with dot product)
• Input:

• Encoder hidden states for each 
input token

• Current decoder hidden state

• Find relevant input words
• Dot product current decoder hidden 

state with all encoder hidden states
• Normalize dot products to 

probability distribution with 
softmax

• Output: “Context” vector c = 
weighted average of encoder 
states based on the probabilities 

3

I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability 
distribution w/ softmax

= .6 e1
+.39 e2 e3

+.01c

Dot Product



Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment

4



Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment

• Syntactic dependencies

5

He ate steak with ketchup

He ate steak with a fork

Goes with “steak”

Modifies “ate”



Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment

• Syntactic dependencies

• Coreference relationships

6



Challenges of modeling sequences

• Modeling relationships between 
words
• Translation alignment

• Syntactic dependencies

• Coreference relationships

• Long range dependencies
• E.g., consistency of characters in 

a novel

• Attention captures relationships
& doesn’t care about “distance”

7



Outline

• Transformers (“Attention is all you need”)
• Replacing recurrence with attention

• All the bells and whistles

• Pretraining
• Frozen features (ImageNet)

• Fine-tuning (Masked language modeling)

8



What does a Transformer (encoder) do?

• Input: Sequence of words

• Output: Sequence of vectors, one
per word

• Same “type signature” as a bi-
directional RNN encoder

• Motivation
• Don’t do explicit sequential processing

• Instead, let attention figure out which 
words are relevant to each other
• (RNN assumes sequence order is what

matters)

9

John kicked the ball

Transformer

e1 e2 e3 e4



Transformer internals

• One transformer consists of 
• Initial embeddings for each 

word of size d
• Let T =#words, so initially we

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

10

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix



Feedforward layer

• Input: T x d matrix

• Output: Another T x d matrix

• Apply the same MLP 
separately to each d-
dimensional vector
• Linear layer from d to dhidden

• ReLU (or other nonlinearity)

• Linear layer from dhidden to d

• Note: No information moves 
between tokens here

11

x1 x2 x3 x4 Input T x d matrix

h1

o1

h2

o2

h3

o3

h4

o4

Linear + ReLU

Linear

Hidden states
(T x dhidden matrix)

Output T x d matrix



Transformer internals

• One transformer consists of 
• Initial embeddings for each 

word of size d
• Let T =#words, so initially we

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

12

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix



Modifying Attention

• What is a multi-headed 
attention layer???

• Similar to attention we’ve 
seen, but need to make 3 
changes…
• Self-attention (no separate 

encoder & decoder)

• Separate queries, keys, and 
values

• Multi-headed

13

I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability 
distribution w/ softmax

= .6 e1
+.39 e2 e3+.01c

Dot Product



Change #1: Self-Attention

• Previously: Decoder state 
looks for relevant encoder 
states

• Self-attention: Each 
encoder state now looks 
for relevant (other) 
encoder states

• Why? Build better
representation for word in
context by capturing 
relationships to other 
words

14

I am hungry

e1 e2
e3

[BEGIN] Tengo hambre

h1

2 1.5 -1

.6 .39 .01 Normalize to probability 
distribution w/ softmax

= .6 e1
+.39 e2 e3+.01c

Dot Product



Change #1: Self-attention

• Take x1 and dot product it with all 
T inputs (including itself)

• Apply softmax to convert to 
probability distribution

• Compute output o1 as weighted
sum of inputs

15

x1 x2 x3 x4 Input T x d matrix

1 2 1.5 Dot products for x1-1

.19 .5 .3 .01 Probabilities for x1

o1
= .19 x1 x2 x3 x4+ .5 + .3 + .01



Change #1: Self-attention

• Take x1 and dot product it with all 
T inputs (including itself)

• Apply softmax to convert to 
probability distribution

• Compute output o1 as weighted
sum of inputs

• Repeat for t=2, 3, …, T

• Replacement for recurrence
• RNN only allows information to flow 

linearly along sequence
• Now, information can flow from any 

index to any other index, as 
determined by attention

16

x1 x2 x3 x4 Input T x d matrix

1 2 1.5 Dot products for x1-1

.19 .5 .3 .01 Probabilities for x1

o1 o2 o3 o4 Output T x d matrix



Change #2: Separate queries, keys, and values

• Previously: We use input 
vectors in three ways
• As “query” for current index
• As “keys” to match with query
• As “values” when computing 

output

• Idea: Use separate vectors for 
each usage
• What each index “looks for” 

different from what it “matches 
with”

• What you store in output 
different from what you “look 
for”/“match with”

17

x1 x2 x3 x4 Input T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
= .19 x1 x2 x3 x4+ .5 + .3 + .01

Values

Query Keys

Dot products for x1

Probabilities for x1



+ .5 + .3 + .01= .19

Change #2: Separate queries, keys, and values

• Apply 3 separate linear layers to 
each of x1, …, xT to get
• Queries [q1, …, qT]
• Keys [k1, …, kT]
• Values [v1, …, vT]
• Each linear layer maps from 

dimension d to dimension dattn

• Dot product q1 with [k1, …, kT]

• Apply softmax to get probability 
distribution

• Compute o1 as weighted sum of 
[v1, …, vT]

• Repeat for t = 2, …, T

18

k1 k2 k3 k4 Keys T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Values

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix



+ .5 + .3 + .01= .19

Matrix form
• Apply 3 separate linear layers to input 

matrix X to get
• Query matrix Q
• Keys K

• Values V

• Each linear layer maps from dimension d 
to dimension dattn

• Compute Q x KT (T x T matrix)
• Each entry is dot product of one query 

vector with one key vector

• Normalize each row with softmax to get 
matrix of probabilities P

• Output = P x V

• Lessons
• Quadratic in T

• All you need is fast matrix multiplication

• All indices run in parallel

19

k1 k2 k3 k4 Keys T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Values

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix



Change #3: Making it Multi-headed

• Instead of doing 
attention once, have h 
different “heads”
• Each has its own 

parameters maps to 
dimension dattn = d/h 

• Concatenate at end to
get output of size T x d

20

x1 x2 x3 x4 Input T x d matrix

Attention head #1

Each head outputs
T x d/2 matrix (h=2)

Attention head #2

h11 h12 h13 h14 h21 h22 h23 h24



Change #3: Making it Multi-headed

• Instead of doing attention 
once, have h different 
“heads”
• Each has its own 

parameters maps to 
dimension dattn = d/h 

• Concatenate at end to get
output of size T x d

• Why? Different heads can 
capture different 
relationships between 
words

21

x1 x2 x3 x4 Input T x d matrix

Attention head #1

Each head outputs
T x d/2 matrix (h=2)

Attention head #2

h11 h12 h13 h14 h21 h22 h23 h24

Concatenate



What do attention heads learn?

• This attention head seems to 
go from a pronoun to its 
antecedent (who the pronoun 
refers to)

• Other heads may do more
boring things, like point to the
previous/next word
• In this way, can do RNN-like 

things as needed

• But attention also can reach 
across long ranges

22



Transformer internals

• One transformer consists of 
• Initial embeddings for each 

word of size d
• Let T =#words, so initially we

have a T x d matrix

• Alternating layers of
• “Multi-headed” attention layer

• Feedforward layer 

• Both take in T x d matrix and
output a new T x d matrix

• Plus some bells and whistles…

23

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix



Embedding layer

• As before, learn a vector for each 
word in vocabulary

• Is this enough?
• Both attention and feedforward layers

are order invariant

• Need the initial embeddings to also
encode order of words!

• Solution: Positional embeddings
• Learn a different vector for each index

• Gets added to word vector at that index

24

John kicked the ball

wJohn wkicked wthe wball

p1 p2 p3 p4

+ + + +

word vectors

positional 
embeddings

sum



Runtime comparison

• RNNs
• Linear in sequence length

• But all operations have to happen in 
series

• Transformers
• Quadratic in sequence length (T x T 

matrices)

• But can be parallelized (big matrix 
multiplication)

25

John kicked the

f1 f2
f3f0

kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

John

ball

f4



Transformer autoregressive decoders

• How to do autoregressive language 
modeling?

• Test-time
• At time t, attend to positions 1 through t

• Only query you have to compute is at index t 
(others were computed already)

• Happens in series

26

[BEGIN] John kicked the

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

John kicked the ball



Transformer autoregressive decoders

• How to do autoregressive language 
modeling?

• Training time: Masked attention trick
• Recall: Attention computes Q x KT (T x T 

matrix), then does softmax

• But if generating autoregressively, time t can 
only attend to times 1 through t

• Solution: Overwrite Q x KT to be –∞ when 
query index < key index

• Still efficient/parallelizable

27

[BEGIN] John kicked the

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

John kicked the ball



Bells and whistles

• Attention: Scaled dot products

• Residual connections

• Layer Norm

• Tokenization: Byte Pair Encoding

28



+ .5 + .3 + .01= .19

Scaled dot product attention

• Earlier I said, “Dot product q1

with [k1, …, kT]”

• Actually, you take dot product 
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large

• This makes probabilities close 
to 0/1

• Scaling dot products down 
encourages more even attention 
at beginning

29

k1 k2 k3 k4 Keys T x d matrix

1 2 1.5 -1

.19 .5 .3 .01

o1
v1 v2 v3 v4

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix



≈

Scaled dot product attention

• Earlier I said, “Dot product q1

with [k1, …, kT]”

• Actually, you take dot product 
and then divide by 𝑑𝑎𝑡𝑡𝑛

• Why?
• If d large, dot product between 

random vectors will be large

• This makes probabilities close 
to 0/1

• Scaling dot products down 
encourages more even attention 
at beginning

30

k1 k2 k3 k4 Keys T x d matrix

100 200 150 -100

≈0 ≈1 ≈0 ≈0

o1 v2

Dot products for x1

Probabilities for x1

q1 q2 q3 q4 Queries T x d matrix

This is bad at beginning—
should give all positions a 
chance to influence



Residual Connections & Layer Norm

• Feedforward and multi-headed 
attention layers
• Take in T x d matrix X

• Output T x d matrix O

• We add a “residual” connection: 
we actually use X + O as output
• Makes it easy to copy information

from input to output

• Think of O as how much we 
change the previous value

• Then, we add “Layer 
Normalization” to prevent very 
big or very small values

31

x1 x2 x3 x4 Input T x d matrix

h1

o1

h2

o2

h3

o3

h4

o4

Linear + ReLU

Linear

Hidden states
(T x dhidden matrix)

Output T x d matrix

Output w/ residual
T x d matrix

o1 o2 o3 o4x1 x2 x3 x4+ + + +



Byte Pair Encoding

• Normal word vectors have 
a problem: How to deal with 
super rare words?
• Names? Typos?

• Vocabulary can’t contain 
literally every possible word…

• Solution: Tokenize string
into “subword tokens”
• Common words = 1 token

• Rare words = multiple tokens

32

Aragorn told Frodo to mind Lothlorien

'Ar', 'ag', 'orn', ‘ told', ‘ Fro', 'do’, 
‘ to', ‘ mind’, ‘ L', 'oth', 'lor', 'ien'

6 words

12 subword
tokens



Putting it all together

33

John kicked the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

add token embedding + positional embedding

Initial T x d matrix

#words = T = 4

Final T x d matrix

Add residual 
connections + 
LayerNorm

BPE tokenization



Announcements

• Section tomorrow: Midterm-related topic review

• HW2 due tonight

• Midterm in-class March 9

34



Outline

• Transformers (“Attention is all you need”)
• Replacing recurrence with attention

• All the bells and whistles

• Pretraining
• Frozen features (ImageNet)

• Fine-tuning (Masked language modeling)

35



Neural Networks and Scale

• Neural networks are very expressive, 
but have tons of parameters
• Very easy to overfit a small training 

dataset

• Traditionally, neural networks were
viewed as flexible but very “sample-
inefficient”: they need many training 
examples to be good

36



Pretraining

• Neural networks learn to extract features 
useful for some training task
• The more data you have, the more successful this

will be

• If your training task is very general, these
features may also be useful for other tasks!

• Hence: Pretraining
• First pre-train your model on one task with a lot of 

data

• Then use model’s features for a task with less data

• Upends the conventional wisdom: You can use
neural networks with small datasets now, if they
were pretrained appropriately!

37

Randomly 
initialized model

Pretrain on lots 
of data/compute

Pretrained
model

Adapt to 
smaller dataset

End task
model



ImageNet Features

Features learned by AlexNet trained on ImageNet

38

Faces

Dogs (eyes?)

Red ornaments/
flowers

Text (years?)

Houses

Lens flare?



ImageNet Features

39

• ImageNet dataset: 14M images, 
1000-way classification

• Most applications don’t have this 
much data

• But the same features are still
useful

• Using “frozen” pretrained features
• Get a (small) dataset for your task
• Generate features from ImageNet-

trained model on this data
• Train linear classifier (or shallow 

neural network) using ImageNet 
features

• “Frozen” because the original 
model is not trained further



Masked Language Modeling (MLM)

• MLM: Randomly mask some words, 
train model to predict what’s missing
• Doing this well requires understanding 

grammar, world knowledge, etc.
• To get training data for this task, just 

need to find any text and randomly delete 
words

• Thus: Crawl internet for text data

• Transformers are good fit due to 
scalability
• Large matrix multiplications are highly 

optimized on GPUs/TPUs
• Don’t need lots of operations happening 

in series (like RNNs)

• Most famous example: BERT

40

John [MASK] the ball

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

kicked
• Probably a verb
• Something a person

can do to a ball



Fine-tuning

• Initialize parameters with BERT
• BERT was trained to expect every input to 

start with a special token called [CLS]

• Add parameters that take in the output 
at the [CLS] position and make 
prediction

• Keep training all parameters (“fine-tune”) 
on the new task

• Point: BERT provides very good
initialization for SGD

41

[CLS] Angeles is …

Multi-head Attention

e1 e2 e3 e4

Feedforward

Feedforward

Multi-head Attention

u1 u2 u3 u4

Los

Make 
prediction



What about ChatGPT???

• ChatGPT appears to be a fine-tuned language model
• Pretrained on autoregressive language modeling 

• Then fine-tuned with a method called RLHF (reinforcement learning from 
human feedback)

• We’ll return to this when we talk about reinforcement learning!

42



Conclusion

• Transformer architecture
• Get rid of recurrent connections

• Instead, all “communication” between words in sequence is handled by
attention

• Pretraining
• First train on large labeled or unlabeled datasets

• Features learned are useful for other tasks with less data

43


