Modern Deep Learning: Transformers, Pre-training

Robin Jia USC CSCI 467, Spring 2023 March 2, 2023

Review: Bi-directional RNN encoders

- Run one RNN left-to-right, and another one right-to-left
 - (I'll call forward-direction hidden states f_t, backwarddirection hidden states b_t)
- Result: Forward and backward encodings of each token in context
 - Can just use the final 2 hidden states as features
 - Can use these as vectors to run attention over

Review: Attention (with dot product)

- Input:
 - Encoder hidden states for each input token
 - Current decoder hidden state
- Find relevant input words
 - Dot product current decoder hidden state with all encoder hidden states
 - Normalize dot products to probability distribution with softmax
- Output: "Context" vector c = weighted average of encoder states based on the probabilities

- Modeling relationships between words
 - Translation alignment

- Modeling relationships between words
 - Translation alignment
 - Syntactic dependencies

"I voted for Nader because he was most aligned with my values," she said.

- Modeling relationships between words
 - Translation alignment
 - Syntactic dependencies
 - Coreference relationships

- Modeling relationships between words
 - Translation alignment
 - Syntactic dependencies
 - Coreference relationships
- Long range dependencies
 - E.g., consistency of characters in a novel
- Attention captures relationships & doesn't care about "distance"

Outline

- Transformers ("Attention is all you need")
 - Replacing recurrence with attention
 - All the bells and whistles
- Pretraining
 - Frozen features (ImageNet)
 - Fine-tuning (Masked language modeling)

What does a Transformer (encoder) do?

- Input: Sequence of words
- Output: Sequence of vectors, one per word
- Same "type signature" as a bidirectional RNN encoder
- Motivation
 - Don't do explicit sequential processing
 - Instead, let attention figure out which words are relevant to each other
 - (RNN assumes sequence order is what matters)

Transformer internals

- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Feedforward layer

- Input: T x d matrix
- Output: Another T x d matrix
- Apply the same MLP separately to each ddimensional vector
 - Linear layer from d to d_{hidden}
 - ReLU (or other nonlinearity)
 - Linear layer from d_{hidden} to d
- Note: No information moves between tokens here

Transformer internals

- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Modifying Attention

- What is a multi-headed attention layer???
- Similar to attention we've seen, but need to make 3 changes...
 - Self-attention (no separate encoder & decoder)
 - Separate queries, keys, and values
 - Multi-headed

Change #1: Self-Attention

- Previously: Decoder state looks for relevant encoder states
- Self-attention: Each encoder state now looks for relevant (other) encoder states
- Why? Build better representation for word in context by capturing relationships to other words

Change #1: Self-attention

- Take x₁ and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o₁ as weighted sum of inputs

Change #1: Self-attention

- Take x₁ and dot product it with all T inputs (including itself)
- Apply softmax to convert to probability distribution
- Compute output o₁ as weighted sum of inputs
- Repeat for t=2, 3, ..., T
- Replacement for recurrence
 - RNN only allows information to flow linearly along sequence
 - Now, information can flow from any index to any other index, as determined by attention

Change #2: Separate queries, keys, and values

- Previously: We use input vectors in three ways
 - As "query" for current index
 - As "keys" to match with query
 - As "values" when computing output
- Idea: Use separate vectors for each usage
 - What each index "looks for" different from what it "matches with"
 - What you store in output different from what you "look for"/"match with"

Change #2: Separate queries, keys, and values

- Apply 3 separate linear layers to each of $x_1, ..., x_T$ to get
 - Queries [q₁, ..., q_T]
 - Keys [k₁, ..., k_T]
 - Values [v₁, ..., v_T]
 - Each linear layer maps from dimension d to dimension d_{attn}
- Dot product q₁ with [k₁, ..., k_T]
- Apply softmax to get probability distribution
- Compute o_1 as weighted sum of $[v_1, ..., v_T]$
- Repeat for t = 2, ..., T

Matrix form

- Apply 3 separate linear layers to input matrix X to get
 - Query matrix Q
 - Keys K
 - Values V
 - Each linear layer maps from dimension d to dimension $\rm d_{attn}$
- Compute $Q \times K^T$ (T x T matrix)
 - Each entry is dot product of one query vector with one key vector
- Normalize each row with softmax to get matrix of probabilities P
- Output = $P \times V$
- Lessons
 - Quadratic in T
 - All you need is fast matrix multiplication
 - All indices run in parallel

Change #3: Making it Multi-headed

- Instead of doing attention once, have h different "heads"
 - Each has its own parameters maps to dimension d_{attn} = d/h
 - Concatenate at end to get output of size T x d

Change #3: Making it Multi-headed

- Instead of doing attention once, have h different "heads"
 - Each has its own parameters maps to dimension d_{attn} = d/h
 - Concatenate at end to get output of size T x d
- Why? Different heads can capture different relationships between words

What do attention heads learn?

- This attention head seems to go from a pronoun to its antecedent (who the pronoun refers to)
- Other heads may do more boring things, like point to the previous/next word
 - In this way, can do RNN-like things as needed
 - But attention also can reach across long ranges

Transformer internals

- One transformer consists of
 - Initial embeddings for each word of size d
 - Let T =#words, so initially we have a T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles...

Embedding layer

- As before, learn a vector for each word in vocabulary
- Is this enough?
 - Both attention and feedforward layers are order invariant
 - Need the initial embeddings to also encode order of words!
- Solution: Positional embeddings
 - Learn a different vector for each index
 - Gets added to word vector at that index

Runtime comparison

• RNNs

- Linear in sequence length
- But all operations have to happen in series
- Transformers
 - Quadratic in sequence length (T x T matrices)
 - But can be parallelized (big matrix multiplication)

Transformer autoregressive decoders

- How to do autoregressive language modeling?
- Test-time
 - At time t, attend to positions 1 through t
 - Only query you have to compute is at index t (others were computed already)
 - Happens in series

Transformer autoregressive decoders

- How to do autoregressive language modeling?
- Training time: Masked attention trick
 - Recall: Attention computes Q x K^T (T x T matrix), then does softmax
 - But if generating autoregressively, time t can only attend to times 1 through t
 - Solution: Overwrite Q x K^T to be −∞ when query index < key index
 - Still efficient/parallelizable

Bells and whistles

- Attention: Scaled dot products
- Residual connections
- Layer Norm
- Tokenization: Byte Pair Encoding

Scaled dot product attention

- Earlier I said, "Dot product q₁ with [k₁, ..., k_T]"
- Actually, you take dot product and then divide by $\sqrt{d_{attn}}$
- Why?
 - If d large, dot product between random vectors will be large
 - This makes probabilities close to 0/1
 - Scaling dot products down encourages more even attention at beginning

Scaled dot product attention

- Earlier I said, "Dot product q₁ with [k₁, ..., k_T]"
- Actually, you take dot product and then divide by $\sqrt{d_{attn}}$
- Why?
 - If d large, dot product between random vectors will be large
 - This makes probabilities close to 0/1
 - Scaling dot products down encourages more even attention at beginning

Residual Connections & Layer Norm

- Feedforward and multi-headed attention layers
 - Take in T x d matrix X
 - Output T x d matrix O
- We add a "residual" connection: we actually use X + O as output
 - Makes it easy to copy information from input to output
 - Think of O as how much we change the previous value
- Then, we add "Layer Normalization" to prevent very big or very small values

Byte Pair Encoding

- Normal word vectors have a problem: How to deal with super rare words?
 - Names? Typos?
 - Vocabulary can't contain literally every possible word...
- Solution: Tokenize string into "subword tokens"
 - Common words = 1 token
 - Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words 'Ar'. 'ag'. 'orn'. ' told'. ' Fro'. 'do'. 12 subword

'Ar', 'ag', 'orn', ' told', ' Fro', 'do', 12 subwo ' to', ' mind', ' L', 'oth', 'lor', 'ien' tokens

Putting it all together

Announcements

- Section tomorrow: Midterm-related topic review
- HW2 due tonight
- Midterm in-class March 9

Outline

- Transformers ("Attention is all you need")
 - Replacing recurrence with attention
 - All the bells and whistles
- Pretraining
 - Frozen features (ImageNet)
 - Fine-tuning (Masked language modeling)

Neural Networks and Scale

- Neural networks are very expressive, but have tons of parameters
 - Very easy to overfit a small training dataset
- Traditionally, neural networks were viewed as flexible but very "sampleinefficient": they need many training examples to be good

Pretraining

- Neural networks learn to extract features useful for some training task
 - The more data you have, the more successful this will be
- If your training task is very general, these features may also be useful for other tasks!
- Hence: Pretraining
 - First pre-train your model on one task with a lot of data
 - Then use model's features for a task with less data
 - Upends the conventional wisdom: You can use neural networks with small datasets now, if they were pretrained appropriately!

ImageNet Features

Features learned by AlexNet trained on ImageNet

ImageNet Features

- ImageNet dataset: 14M images, 1000-way classification
- Most applications don't have this much data
- But the same features are still useful
- Using "frozen" pretrained features
 - Get a (small) dataset for your task
 - Generate features from ImageNettrained model on this data
 - Train linear classifier (or shallow neural network) using ImageNet features
 - "Frozen" because the original model is not trained further

Masked Language Modeling (MLM)

- MLM: Randomly mask some words, train model to predict what's missing
 - Doing this well requires understanding grammar, world knowledge, etc.
 - To get training data for this task, just need to find any text and randomly delete words
 - Thus: Crawl internet for text data
- Transformers are good fit due to scalability
 - Large matrix multiplications are highly optimized on GPUs/TPUs
 - Don't need lots of operations happening in series (like RNNs)
- Most famous example: BERT

Fine-tuning

- Initialize parameters with BERT
 - BERT was trained to expect every input to start with a special token called [CLS]
- Add parameters that take in the output at the [CLS] position and make prediction
- Keep training all parameters ("fine-tune") on the new task
- Point: BERT provides very good initialization for SGD

What about ChatGPT???

- ChatGPT appears to be a fine-tuned language model
 - Pretrained on autoregressive language modeling
 - Then fine-tuned with a method called RLHF (reinforcement learning from human feedback)
 - We'll return to this when we talk about reinforcement learning!

Conclusion

- Transformer architecture
 - Get rid of recurrent connections
 - Instead, all "communication" between words in sequence is handled by attention
- Pretraining
 - First train on large labeled or unlabeled datasets
 - Features learned are useful for other tasks with less data