Modern Deep Learning:
Transformers, Pre-training
Robin Jia

USC C5CI 467, Spring 2023
March 2, 2023

Review: Bi-directional RNN encoders

by «— Prlie— g, —
f, _W/fZ fy| —>
P\
To be or

* Run one RNN left-to-right,

_ «— |by| «—p, and another one right-to-left

 (I'll call forward-direction
hidden states f,, backward-

direction hidden states b,)
fr » Result: Forward and
backward encodings of
T each token in context
question Can just use the final 2

hidden states as features

e Can use these as vectors to
run attention over

Review: Attention (with dot product)

* [nput:
- « Encoder hidden states for each
C =.6lg+.39% g, +01 |e, input token
| N » Current hidden state
6 .39 .01 g;;wsgﬁgéowerggga'g » Find relevant input words
T t t « Dot product current decoder hidden

2 : Dot Product state with all encoder hidden states
ﬁ J/x ot Frodue - Normalize dot products to

probability distribution with
€5 h; softmax

 Output: “Context” vector ¢ =
weighted average of encoder
states based on the probabilities

| am hungry

Challenges of modeling sequences

3] o = : : :
s |85, 3 %. 4 < Modeling relationships between
e £ oflsle g5 .58 &
ﬁ%%ﬁﬂﬂga‘aEq.—u v words
L' . .
ccord Translation alignment
sur
la

Zone

économique
europeenne
a

éteé
signé
en
ao(t
1992

<end>

Challenges of modeling sequences

Goes with “steak” * Modeling relationships between
words
He ate Steak Wlth kEtChUp e Translation alignment
Modifies “ate” Syntactic dependencies

He ate steak with a fork

Challenges of modeling sequences

— * Modeling relationships between
‘I voted for Nader because he was most
words
— . .
aligned with my values,” she said. Translation alignment

 Syntactic dependencies
 Coreference relationships

Challenges of modeling sequences

* Modeling relationships between
words
 Translation alignment
 Syntactic dependencies
 Coreference relationships

 Long range dependencies
 E.g., consistency of characters in
a novel

 Attention captures relationships
& doesn't care about “distance”

Outline

 Transformers (“Attention is all you need”)

» Replacing recurrence with attention
 All the bells and whistles

* Pretraining
* Frozen features (ImageNet)
» Fine-tuning (Masked language modeling)

What does a Transformer (encoder) do?

€

€5

I

€3

€4

Transformer

I

John

kicked

the

ball

* Input: Sequence of words

 Output: Sequence of vectors, one
per word

« Same “type signature” as a bi-
directional RNN encoder

* Motivation
* Don't do explicit sequential processing

* Instead, let attention figure out which
words are relevant to each other

« (RNN assumes sequence order is what
matters)

Transformer internals

e e e e, Final T x d matrix]
1 i ’ b * One transformer consists of
I « Initial embeddings for each

Feedforward Word Of size d
: : « Let T =#words, so initially we

Multi-head Attention have a T x d matrix
Feedforward * Alternating layers of
, : « “Multi-headed” attention layer

Multi-head Attention

» Feedforward layer

u, u, U, u/ Initial T x d matrix * Both take in T x d matrix and
output a new T x d matrix
| Embedding « Plus some bells and whistles...

John kicked the ball #words=T=4

Feedforward layer

04 |0
P
hi |h,
P
Xy %,

 Input: T x d matrix
* Qutput: Another T x d matrix

Linear * Apply the same MLP
separately to each d-
dimensional vector
* Linear layer from d to d;,y4en
 ReLU (or other nonlinearity)
* Linear layer from dy, 440, 10 d

Output T x d matrix

Hidden states
(T X dpiggen, Matrix)

Linear + ReLU
Input T x d matrix

 Note: No information moves
between tokens here

11

Transformer internals

e e e e, Final T x d matrix]
1 i ’ b * One transformer consists of
I « Initial embeddings for each
Feedforward Word Of size d
_ : « Let T =#words, so initially we
Multi-head Attention have a T x d matrix
Feedforward * Alternating layers of
; : “Multi-headed” attention layer
Multi-head Attention

« Feedforward layer

u, u, U, u/ Initial T x d matrix * Both take in T x d matrix and
output a new T x d matrix
| Embedding « Plus some bells and whistles...

John kicked the ball #words=T=4

Modifying Attention

c|= .6 le+.39 g +.01 e, » What S @ multi-headed

attention layer???

.6 .39 .01 Normalize to probabilit . :)

- seen, but need to make 3

ﬁ _ADN Product
changes...

e, e; h, « Self-attention (no separate

| am hungry encoder & decoder)

« Separate queries, keys, and
values

* Multi-headed

13

Change #1: Self-Attention

+.39 e, +.01 e,

.01

S

Normalize to probability
distribution w/ softmax

€3 h,

MKADN Product

| am hungry

 Previously: Decoder state
looks for relevant encoder
states

 Self-attention: Each
encoder state now looks
for relevant (other)
encoder states

« Why? Build better
representation for word in
context by capturing
relationships to other
words

14

Change #1: Self-attention

 Take x, and dot product it with all
19(Xq| + .5 |Xo|+ .3|Xq + .01|X, T inputs (including itself)

©
|

« Apply softmax to convert to

19 5 3 .01 Probabilities for x, probabilitydiStl‘ibUTiOn

1 2 1.5 -1 Dot products f .
m OLPIOGHES TGy, Compute output o, as weighted
sum of inputs

X1 X5 X3 X, Input T x d matrix

15

Change #1: Self-attention

 Take x, and dot product it with all
T inputs (including itself)

» Apply softmax to convert to
19 5 3 01 Probabiliiesforx, Probability distribution

1 2 15 -1 Dotproductsforx, gg&“g‘ﬂﬁg&tgm 0, as weighted

k ; N » Repeat fort=2,3, .., T

X Xy Xg |[X4 InputT xdmatrix « Replacement for recurrence

* RNN only allows information to flow
linearly along sequence

* Now, information can flow from any
index to any other index, as
determined by attention

0, 0, Oj5 0, OutputT x d matrix

16

Change #2: Separate queries, keys, and values

Values
— /7 N * Previously: We use input
0 = .19(Xq| + .5 [Xg + .3|Xg + .01|X, VeCtO';S In tbree ways
« As “query” for current index
19 5 3 .01 Probabilities forx, * As "keys” to match with query
« As “values” when computing
1 2 1.5 -1 Dot products for x, output
V NN * |dea: Use separate vectors for
X X X X Input T x d matrix each usage
1 i i i What each index “looks for”
/ ~dX different from what it “matches
Ke with”
Query ys

« What you store in output
different from what you “look
for’/*match with”

17

Change #2: Separate queries, keys, and values

Values
1 2 1.5 -1 Dot products for x,
Ki K, ki |k KeysT xd matrix
d1 op ds g4 Queries T x d matrix

« Apply 3 separate linear layers to
each of x, .., X7 to get

* Queries [qq, ..., 7]
* Keys [k, ..., kq]
 Values [v,, .., V4]

- Each linear layer maps from
dimension d to dimension d_,

* Dot product g, with [k;, ..., k]
* Apply softmax to get

« Compute 0, as weighted sum of
[V, ..., V7]
 Repeatfort=2,.., T

18

Matrix form

Values

—/

d;

Vi vy
2 1.5
ky ks

V3

ds

ds

d4

V4

Dot products for X

Keys T x d matrix

Queries T x d matrix

Apply 3 separate linear layers to input
matrix X to get

* Query matrix Q

 KeysK

« ValuesV

« Each linear layer maps from dimension d
to dimension d_,

Compute Q x KT (T x T matrix)

« Each entry is dot product of one query

vector with one key vector

Normalize each row with softmax to get
matrix of probabilities

Output =+ xV
Lessons
 QuadraticinT

 All you need is fast matrix multiplication
 Allindices run in parallel

19

Change #3: Making it Multi-headed

» Instead of doing
Eachheadoutputs Att€ntion once, have h

11 T2 [113 fhi4 21| fl22 123 flo4 Txd/2matrix (h=2) different “heads”
Attention head #1 | | Attention head #2 « Each has its own

T~ —" parameters maps to
' ‘ dimension d_,, = d/h

 Concatenate at end to
get output of size T x d

X1 X5 X3 X, InputT x d matrix

20

Change #3: Making it Multi-headed

Concatenate Instead of doing attention
o hend once, have h different
ac ead outputs " n
11| N9l N3 N4 21| N2g N2g Nog Txd/2 matrixlzh=2) heads
« Each has its own
Attention head #1 | | Attention head #2 parameters maps to
v\l/' dimension d_;,, = d/h
: ‘ | - Concatenate at end to get
X1 X7 X3 |X4 InputT xdmatrix output of size T x d

» Why? Different heads can
capture different
relationships between
words

21

What do attention heads learn?

She

He

Gender-specific term

[Layer: 5 +

The
girl
and
the
boy
walked
home

She

Layer: 5 &

The

girl
and
the
boy
walked
home

He

The Later
girl
and Alice
the came
boy up
walked to
home Bob
She She
Layer: 5§ %
The Late
girl ;
and Alice
the came
boy up
walked to
home Bob

He

Layer: 5 %

Name

Later
Alice
to
Bob

She

Later

Alice

came

Bob

 This attention head seems to
go from a pronoun to its
antecedent (who the pronoun
refers t0)

* Other heads may do more
boring things, like point to the
previous/next word

* In this way, can do RNN-like
things as needed

e But attention also can reach
across long ranges

22

Transformer internals

e e e e, Final T x d matrix]
1 i > i * One transformer consists of
I » Initial embeddings for each

Feedforward word of size d
: : « Let T =#words, so initially we

Multi-head Attention have a T x d matrix
Feedforward * Alternating layers of
: : * “Multi-headed” attention layer

Multi-head Attention

« Feedforward layer

u, u, U, u/ Initial T x d matrix * Both take in T x d matrix and
output a new T x d matrix
| Embedding « Plus some bells and whistles...

John kicked the ball #words=T=4

Embedding layer

* As before, learn a vector for each

word in vocabulary positional
oF P2 Ps3 P4 embeddings
. I ?
Is this enough” N N . 1+ sum
 Both attention and feedforward layers
are order invariant Whohn -~ Wiicked Wne VE' word vectors

* Need the initial embeddings to also 1

encode order of words!
John kicked the ball

» Solution: Positional embeddings
« Learn a different vector for each index
* Gets added to word vector at that index

24

Runtime comparison

fO—Pf.I—b f2—>f3—>f4 .RNNS

) 4 4)

John kicked the ball * Linear in sequence length
 But all operations have to happen in
€ € €3 ey series
Feedforward * Transformers
Multi-head Attention » Quadratic in sequence length (T x T
matrices)
Feedforward » But can be parallelized (big matrix
Multi-head Attention multiplication)
U, us ug |uy

John kicked the ball

25

Transformer autoregressive decoders

Jonn - kicked—the - ball s How to do autoregressive language

1 1 [modeling?

B B ™ e Testtime
Feedforward « At time t, attend to positions 1 through t
Multi-head Attention * Only query you have to compute is at index t
(others were computed already)
Feedforward , ,
 Happens in series
Multi-head Attention

U U, ug |uy

[BEGIN] John kicked the

26

Transformer autoregressive decoders

Jonn - kicked—the - ball s How to do autoregressive language

1 I [modeling?

B B ™ .« Training time: Masked attention trick
Feedforward » Recall: Attention computes Q x KT (T x T
Multi-head Attention matrix), then does softmax
=—— But if generatin.g autoregressively, time t can
only attend to times 1 through t
Multi-head Attention « Solution: Overwrite Q x KT to be —0o when

query index < key index
« Still efficient/parallelizable

U U, ug |uy

[BEGIN] John kicked the

27

Bells and whistles

 Attention: Scaled dot products
 Residual connections

* Layer Norm

 Tokenization: Byte Pair Encoding

28

Scaled dot product attention

e Earlier | said, “Dot product g
0= 19|Vl + .5 Vol + .3|vg+ 01|V, with [k, ..., kq]”

 Actually, you take dot product

19 D 3 .01 ' lities for x, and then divide by \/d

K, K, ki |kj KeysT xd matrix « If d large, dot product between
= random vectors will be large

, . » This makes probabilities close
op d, d3 d4 Queries T x d matrix to 0/1

« Scaling dot products down
encourages more even attention
at beginning

29

Scaled dot product attention

04 = [¥2 chance to influence
100 200 150 -100
ki kg kq |k,
d; op ds d4

This is bad at beginning—
should give all positions a

e Earlier | said, “Dot product g
with [k, ..., kq]”

 Actually, you take dot product

Probabilities for x, and then divide by JVAdgtin
Dot products forx, Why?

« If d large, dot product between
random vectors will be large

, _ » This makes probabilities close
Queries T x d matrix to 0/

Keys T x d matrix

« Scaling dot products down
encourages more even attention
at beginning

30

Residual Connections & Layer Norm

* Feedforward and multi-headed
attention layers
« Takein T x d matrix X
e Output T x d matrix O

« We add a “residual” connection:
we actually use X + O as output

* Makes it easy to copy information
from input to output

« Think of O as how much we
change the previous value

* Then, we add “Layer
Normalization” to prevent very
big or very small values

O

Output w/ residual

O2+Xy |93+1X3 |04+X4 1y 4 matrix
0, O3 0, Output T x d matrix
1 1 1 Linear
Hidden states
L g hy (T X dpiggen, Matrix)
1 \ 1 \ 1 Linear + ReLU
Xo X3 Q Input T x d matrix

Byte Pair Encoding

* Normal word vectors have
a problem: How to deal with
super rare words?

 Names? Typos?

« Vocabulary can't contain
literally every possible word...

e Solution: Tokenize S'[ring Ar’ ’ag’,.’orn’, “told’, “Fro/ 'do’, 12 subword
into “subword tokens” “to’ “mind’, "L’ 'oth’ 'lor’ 'ien’ tokens
« Common words = 1 token
« Rare words = multiple tokens

Aragorn told Frodo to mind Lothlorien 6 words

32

Putting it all together

€,

€, €3

1

€4

S

Final T x d matrix

Feedforward

~
\Add residual

\

Multi-head Attention

/

[connections +
— LayerNorm

Feedforward

-

/

/

Multi-head Attention

U,

U, Us

u

D

Initial T x d matrix

BPE tokenization 1 add token embedding + positional embedding
ball #words=T=4

John

kicked the

33

Announcements

» Section tomorrow: Midterm-related topic review
 HW?2 due tonight
» Midterm in-class March 9

34

Outline

 Transformers (“Attention is all you need”)
» Replacing recurrence with attention
 All the bells and whistles

* Pretraining
* Frozen features (ImageNet)
» Fine-tuning (Masked language modeling)

35

Neural Networks and Scale

» Neural networks are very expressive,
but have tons of parameters

 Very easy to overfit a small training
dataset

» Traditionally, neural networks were
viewed as flexible but very “sample-
inefficient”: they need many training
examples to be good

36

Pretraining

 Neural networks learn to extract features
useful for some training task

« The more data you have, the more successful this
will be

* If your training task is very general, these
features may also be useful for other tasks!

« Hence: Pretraining

* First pre-train your model on one task with a lot of
data

« Then use model’'s features for a task with less data

« Upends the conventional wisdom: You can use

neural networks with small datasets now, if they
were pretrained appropriately!

Randomly
initialized model

Pretrain on lots
of data/compute

Pretrained
model

smaller dataset

\ Adapt to

37

ImageNet Features

Red ornaments/

056‘ L | flowers

| Text (years?)
;-l Lens flare?
T

Features learned by AlexNet trained on ImageNet

38

ImageNet Features

« ImageNet dataset: 14M images,
1000-way classification

» Most applications don't have this

. e much data
- ‘°"?.'..’5.’...sr T oeecooter——eoPart s But the same features are still
ack widow eboa kart uar
D e ironeh - gl B useful
tick fireboat bumper car snow leopard . “« ” .
manal Srikos pletiorn golfcart Egyptian cat » Using “frozen” pretrained features

 Get a (small) dataset for your task

» Generate features from ImageNet-
trained model on this data

« Train linear classifier (or shallow
neural network) using ImageNet

mushroom erry Aadagascar cat features
vertible agaric dalmatian sq I monkey
grille mushroom grape spider monkey “Frozen” because the original
pickup jelly fungus elderberry titi
beach wagonj gill fungus |ffordshire bullterrier indri mOdeI IS nOt tralned fu rther
fire engine || dead-man’'s-fingers ' currant howler monkey

39

Masked Language Modeling (MLM)

red Probably a verb » MLM: Randomly mask some words,
* Something a person train model to predict what's missing
I can do to a ball « Doing this well requires understanding
grammar, world knowledge, etc.
€ € € (€ « To get training data for this task, just
need to find any text and randomly delete
Feedforward words

« Thus: Crawl internet for text data
» Transformers are good fit due to

Multi-head Attention

Feedforward scalability
 Large matrix multiplications are highly
Multi-head Attention optimized on GPUs/TPUs

* Don't need lots of operations happening
in series (like RNNSS)

u, u, Us Uy
* Most famous example: BERT

John [MASK] the ball

40

Fine-tuning

Make
prediction * Initialize parameters with BERT
I « BERT was trained to expect every input to
e, e, e e, start with a special token called [CLS]
E— « Add parameters ’ghat take in the output
at the [CLS] position and make
Multi-head Attention prediction
Feedforward Keep training all parameters (“fine-tune”)
Multi-head Attention on the new task
 Point: BERT provides very good
ot S o T o O initialization for SGD

[CLS] Los Angeles is..

41

What about ChatGPT???

» ChatGPT appears to be a fine-tuned language model
 Pretrained on autoregressive language modeling

 Then fine-tuned with a method called RLHF (reinforcement learning from
human feedback)

« We'll return to this when we talk about reinforcement learning!

Conclusion

» Transformer architecture
 Get rid of recurrent connections
* Instead, all “communication” between words in sequence is handled by

attention
* Pretraining

* First train on large labeled or unlabeled datasets
« Features learned are useful for other tasks with less data

43

