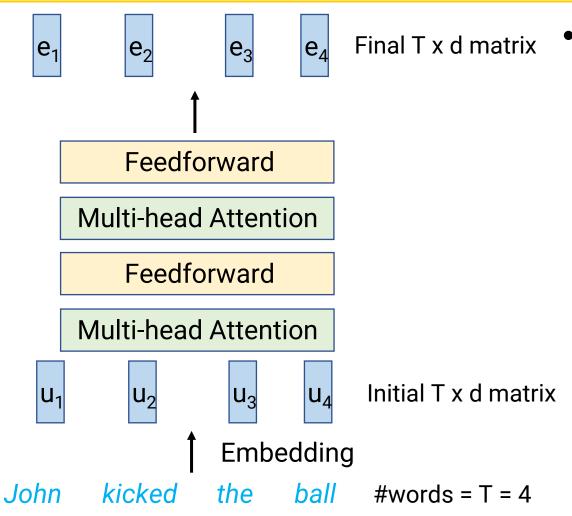
Finishing Transformers & Pretraining, Decision Trees, Ensembles

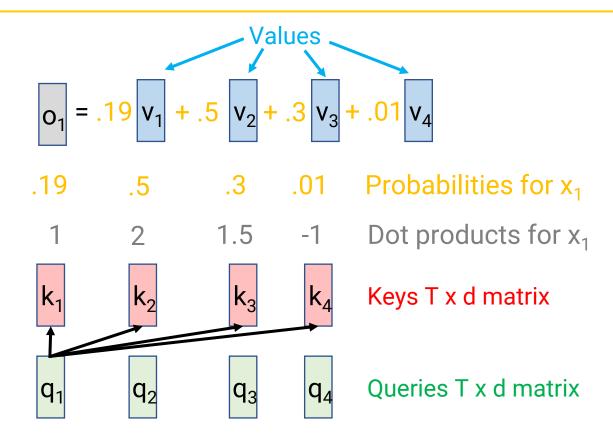
Robin Jia USC CSCI 467, Spring 2023 March 7, 2023

Review: Transformers



- One transformer consists of
 - Embeddings for each word of size d
 - Let T =#words, so initially T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles
 - Residual connections & LayerNorm
 - Byte pair encoding tokenization

Review: Multi-headed Attention

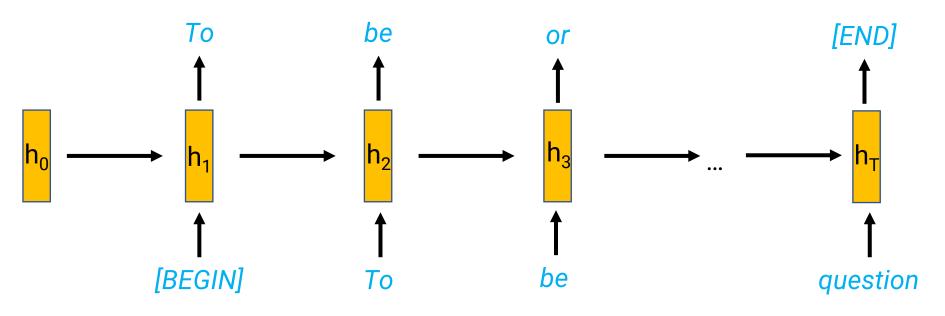


- At each head, apply 3 separate linear layers to input matrix X to get
 - Query matrix Q
 - Keys K
 - Values V
 - Each linear layer maps from dimension d to dimension d_{attn}
- Compute Q x K^T (T x T matrix)
 - Each entry is dot product of one query vector with one key vector
- Normalize each row with softmax to get matrix of probabilities P
- Output = P x V

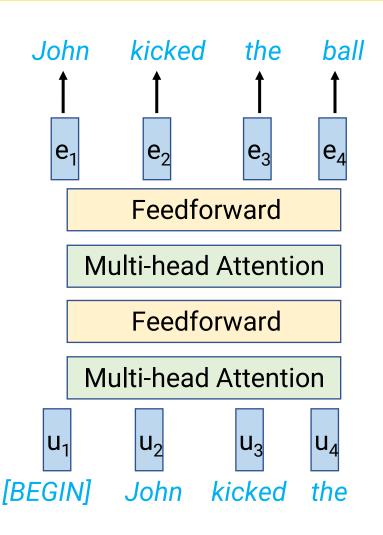
Outline

- Transformer decoders
- Pretraining
- Decision Trees and Ensemble learning

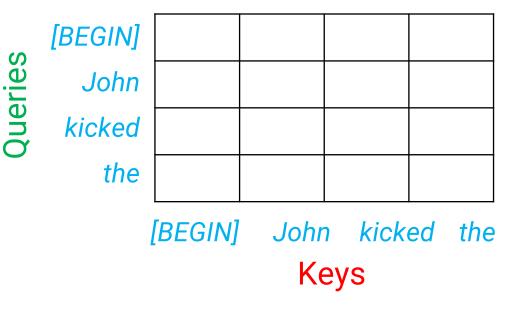
Review: RNN Decoder Language Models



- At each step, predict the next word given current hidden state
- Must happen in series at both training and test time
 - Each hidden state depends on the previous hidden state



- How to do autoregressive language modeling?
- Test-time
 - At time t, attend to positions 1 through t
 - Happens in series



- How to do autoregressive language modeling?
- Training time: Masked attention trick
 - Recall: Attention computes $Q \times K^T (T \times T \text{ matrix})$, then does softmax
 - But if generating autoregressively, time t can only attend to times 1 through t
 - Solution: Overwrite $Q \times K^T$ to be $-\infty$ when query index < key index
 - All timesteps happen in parallel

	[BEGIN]	10	-2	6	3
	John	0	7	2	-4
	kicked	-3	4	5	-8
	the	2	1	7	6

[BEGIN] John kicked the Keys

- How to do autoregressive language modeling?
- Training time: Masked attention trick
 - Recall: Attention computes $Q \times K^T (T \times T)$ matrix, then does softmax
 - But if generating autoregressively, time t can only attend to times 1 through t
 - Solution: Overwrite Q x K^T to be −∞ when query index < key index
 - All timesteps happen in parallel

dueries	[BEGIN]	10	-2	6	3
	John	0	7	2	-4
	kicked	-3	4	5	-8
	the	2	1	7	6

[BEGIN] John kicked the Keys

- How to do autoregressive language modeling?
- Training time: Masked attention trick
 - Recall: Attention computes $Q \times K^T (T \times T)$ matrix, then does softmax
 - But if generating autoregressively, time t can only attend to times 1 through t
 - Solution: Overwrite Q x K^T to be −∞ when query index < key index
 - All timesteps happen in parallel

Queries	[BEGIN]	10	-∞	-∞	-∞
	John	0	7	-∞	-∞
	kicked	-3	4	5	-∞
	the	2	1	7	6

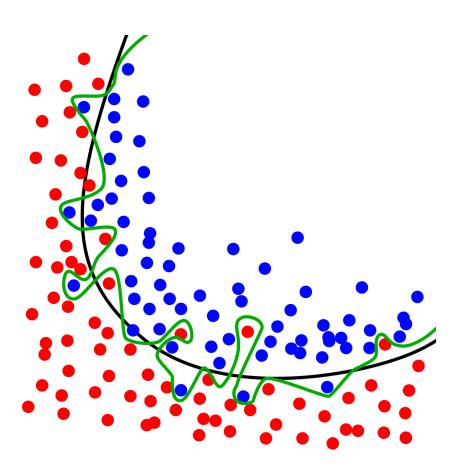
[BEGIN] John kicked the Keys

Outline

- Transformers ("Attention is all you need")
 - Replacing recurrence with attention
 - All the bells and whistles
- Pretraining
 - Frozen features (ImageNet)
 - Fine-tuning (Masked language modeling)

Neural Networks and Scale

- Neural networks are very expressive, but have tons of parameters
 - Very easy to overfit a small training dataset
- Traditionally, neural networks were viewed as flexible but very "sampleinefficient": they need many training examples to be good
 - Computationally expensive
 - Training at scale often uses GPUs



Pretraining

- Neural networks learn to extract features useful for some training task
 - The more data you have, the more successful this will be
- If your training task is very general, these features may also be useful for other tasks!
- Hence: Pretraining
 - First pre-train your model on one task with a lot of data
 - Then use model's features for a task with less data
 - Upends the conventional wisdom: You can use neural networks with small datasets now, if they were pretrained appropriately!

Randomly initialized model

Pretrain on lots of data/compute

Pretrained model

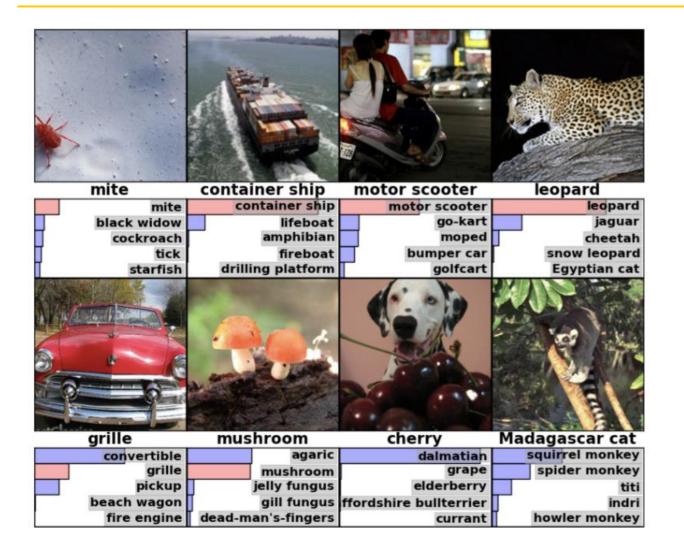
Adapt to smaller dataset

End task model

ImageNet Features

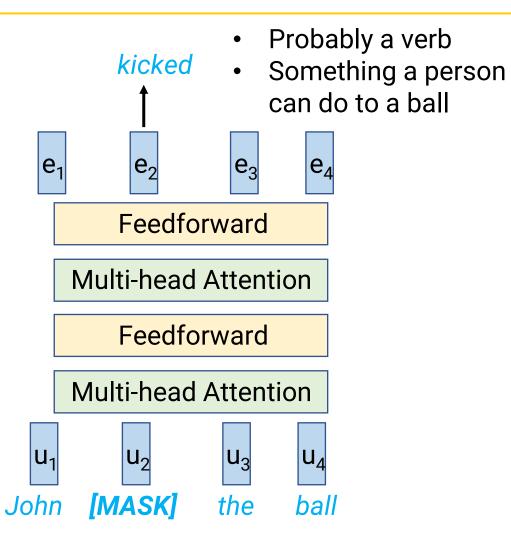
Features learned by AlexNet trained on ImageNet

ImageNet Features



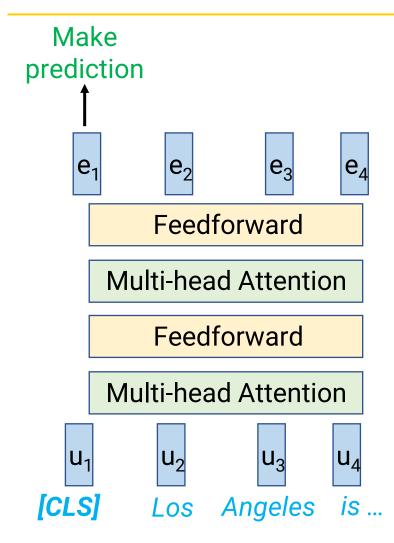
- ImageNet dataset: 14M images, 1000-way classification
- Most applications don't have this much data
- But the same features are still useful
- Using "frozen" pretrained features
 - Get a (small) dataset for your task
 - Generate features from ImageNettrained model on this data
 - Train linear classifier (or shallow neural network) using ImageNet features

Masked Language Modeling (MLM)



- MLM: Randomly mask some words, train model to predict what's missing
 - Doing this well requires understanding grammar, world knowledge, etc.
 - Get training data just by grabbing any text and randomly delete words
 - Thus: Crawl internet for text data
- Transformers are good fit due to scalability
 - Large matrix multiplications are highly optimized on GPUs/TPUs
 - Don't need lots of operations happening in series (like RNNs)
- Most famous example: BERT

Fine-tuning



- Initialize parameters with BERT
 - BERT was trained to expect every input to start with a special token called [CLS]
- Add parameters that take in the output at the [CLS] position and make prediction
- Keep training all parameters ("fine-tune") on the new task
- Point: BERT provides very good initialization for SGD

What about ChatGPT???

- ChatGPT appears to be a fine-tuned language model
 - Pretrained on autoregressive language modeling
 - Then fine-tuned with a method called RLHF (reinforcement learning from human feedback)
 - We'll return to this when we talk about reinforcement learning!

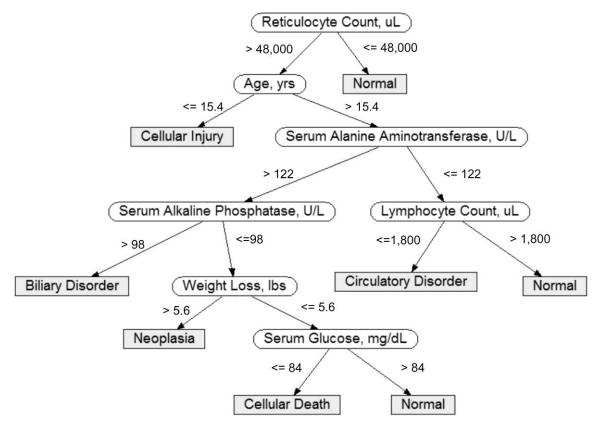
Announcements

- Midterm exam this Thursday!
 - All logistics information in Edstem post
- Project progress reports due Thursday March 23
 - Expectations on the website
 - CARC computing resource

Modeling decision making

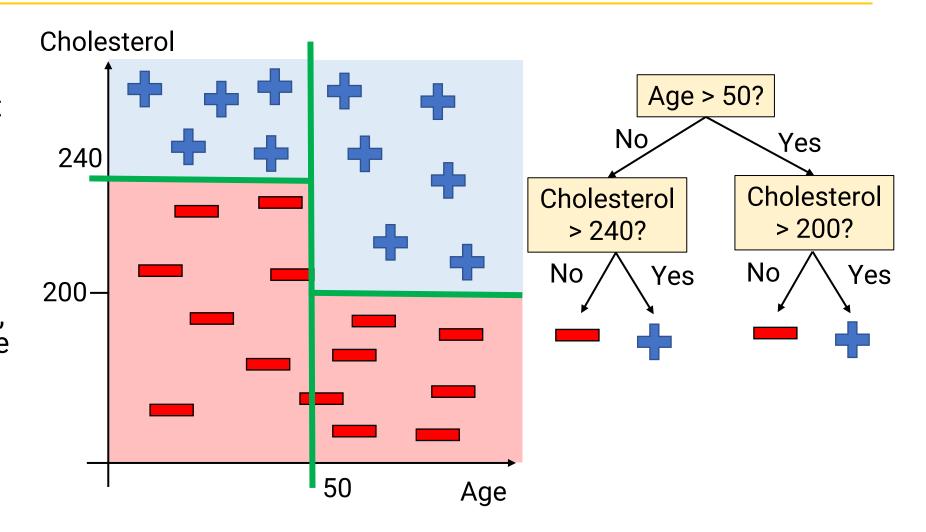
- Human experts make complex decisions and predictions every day
 - E.g., Given observations about a patient, what disease do they have?
- Can we build models that emulate the human decision-making process?

Hepatic Disorders Decision Tree

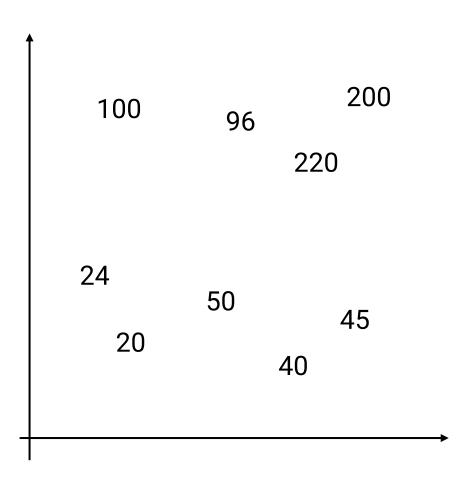


Decision Trees

- At each node, split on one feature
- Remember the best output at each leaf node
 - Classification: Majority class
 - Regression: Mean within node
- Given new example, find which leaf node it belongs to and predict the associated output
- Interpretable!



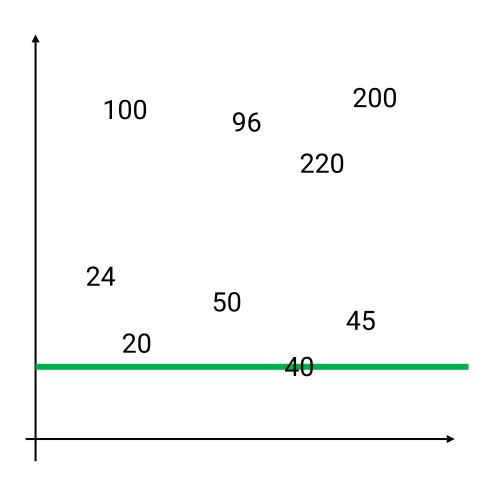
- At each node, decide:
 - Which feature to use
 - Which threshold to split on
- Strategy
 - Try each feature and all possible splits
 - Greedily choose split that minimizes error



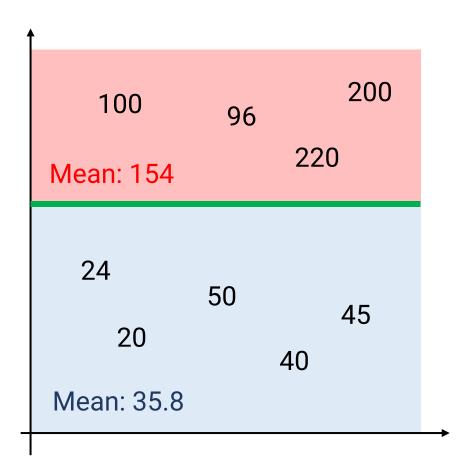
- At each node, decide:
 - Which feature to use
 - Which threshold to split on
- Strategy
 - Try each feature and all possible splits
 - Greedily choose split that minimizes error



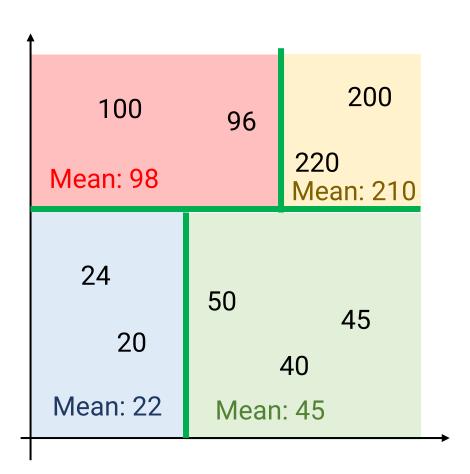
- At each node, decide:
 - Which feature to use
 - Which threshold to split on
- Strategy
 - Try each feature and all possible splits
 - Greedily choose split that minimizes error



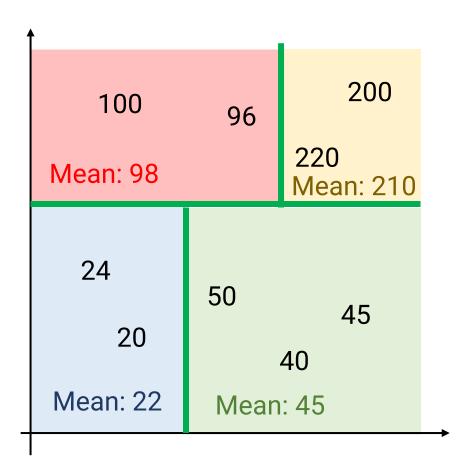
- At each node, decide:
 - Which feature to use
 - Which threshold to split on
- Strategy
 - Try each feature and all possible splits
 - Greedily choose split that minimizes error



- At each node, decide:
 - Which feature to use
 - Which threshold to split on
- Strategy
 - Try each feature and all possible splits
 - Greedily choose split that minimizes error

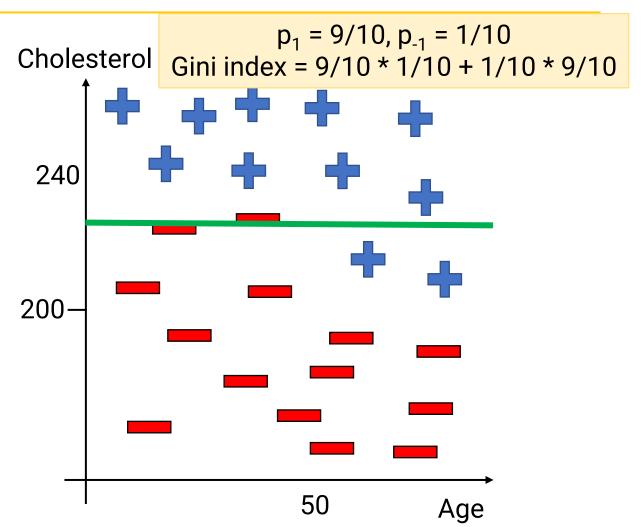


- When do we stop splitting?
 - If we split forever to nodes of size 1, we overfit
 - Heuristic stopping criteria
 - Minimum number of examples per node
 - Maximum depth of tree
 - Can go back afterwards and "prune" tree (i.e., merge nodes back together)



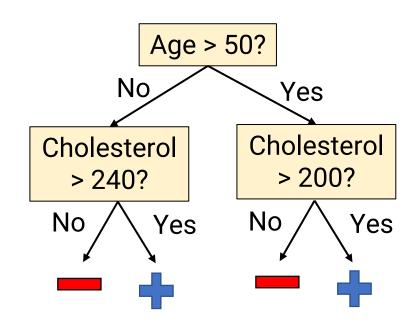
Learning decision trees for classification

- Basic idea is the same
- But how do we measure the goodness of a split?
 - Option 1: Accuracy of majority classifier
 - Option 2: Gini index $\sum_{c=1}^{C} p_c (1-p_c)$ 200–
 - p_c = Empirical probability of class c within the current node
 - Equals expected number of errors if you classify with the empirical distribution

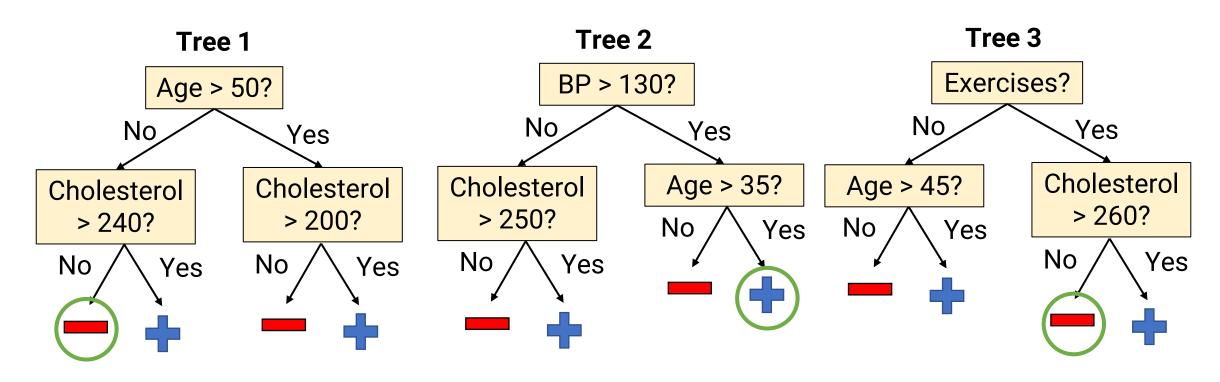


Handling Missing Features

- Some examples may be missing some features
 - E.g., For some patients, you didn't measure cholesterol level
 - What to do at a node where you split on cholesterol?
- Idea: Surrogate variables
 - During training, at each node, check which features act as surrogates of the feature you're using (i.e., lead to similar splits)
 - If original feature is missing, use a surrogate feature
 - E.g., If "blood pressure > 130" is correlated with "Cholesterol > 240", use blood pressure as surrogate for patients without cholesterol measurement

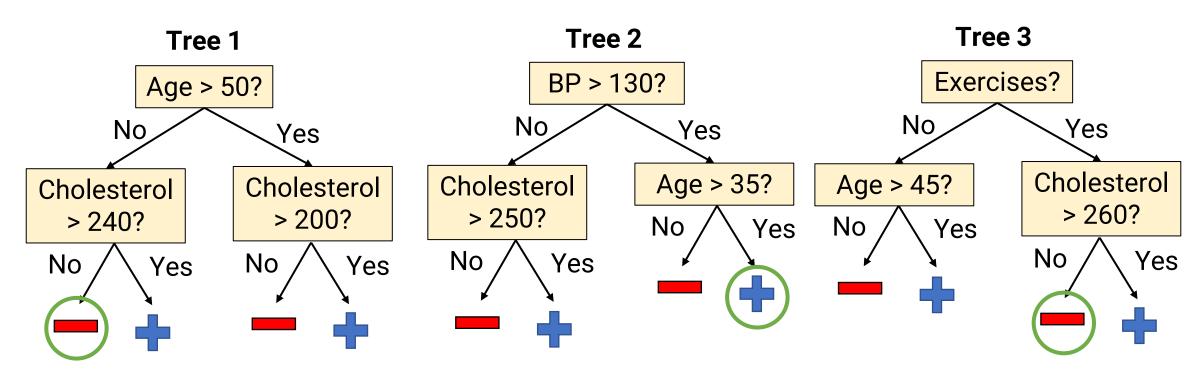


Ensembling



- Create an "ensemble" of multiple models (e.g., multiple trees)
- Make final prediction by averaging/majority vote

Ensembling and Trees



- An individual tree can capture complex patterns, but should not be too deep to avoid overfitting
- Thus it can only depend on a handful of features
- An ensemble of trees can leverage more features

Bagging

- How do you learn different trees from the same dataset?
- Idea: Randomly resample the dataset!
 - Given dataset with n examples, sample a new dataset of n examples with replacement
 - Also known as "Bootstrapping"
 - In expectation, each new dataset contains 63% of the original dataset, with some examples duplicated
 - Learn a tree on each resampled dataset

Original Dataset

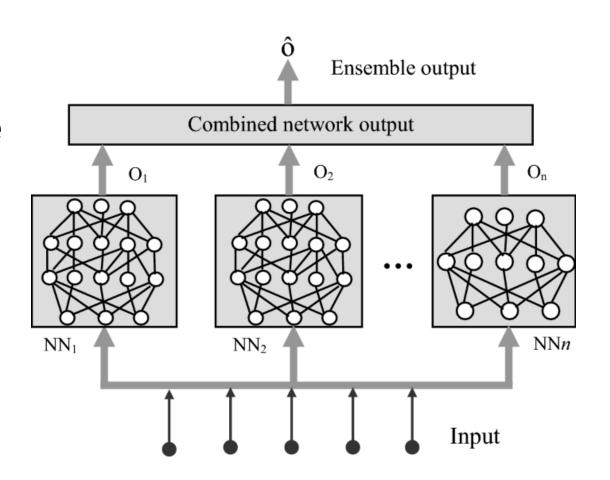
Bootstrap sample

Random Forests

- Goal: Make the individual trees in the ensemble more different
 - Thus, all elements of the ensemble are complementary
 - Or: Reduce correlation between trees = lower variance
- Simple strategy: Before each split, choose a random subset of features as candidates for splitting
 - Something like \sqrt{d} features if d total features
 - Can even be randomly choosing 1 feature
- Very good general-purpose learners in practice!

Ensembles and neural networks

- Random Forest: Each member of ensemble differs due to random resampling of data & feature choice
- Neural Networks: Already have randomness
 - Initialization
 - Order of examples for SGD
 - Dropout
- In practice: Very common to ensemble neural networks!
 - Compute vs. accuracy trade-off



Conclusion

- Transformers as decoders
 - Attention can only attend to past/present, not future
 - At training time, handle this with clever masking
- Pretraining
 - First train on large labeled or unlabeled datasets
 - Features learned are useful for other tasks with less data
- Decision trees
 - Human-interpretable decision making
 - Pairs well with ensembling, leading to random forests