1/26/2023: Overfitting, Regularization	
Review of linear supervised learning methods s learn from dataset of (x, y) pairs	so far
Linear Logistic. Softm	~ 0&
Repression Regression Regress	sion
Task Regression Binary classification multiclass yER yEL-1,13 yEL-2	classifications
Parameters we Rg we IRa with,, we total c.	s eiRd d params
Probabilistic Story y~Normal(wTx, 6 ²)p(y=1 x)=6(wTx) p(y=j)=exp mean 12xC2, zen k=1 Normalizes probability	(w ^(w) x) re(w ^(w) x) to distribution
flow to Maximum Likelihood Estimation (MLE)
loss function maximize probability of data = TTp(y(i) x / 1	
how bad any with respect to w choice of 2> minimize respective log likelihood = - 5 log p parameters is 2> minimize respective log likelihood = - 5 log p	$p(y^{(i)} x^{(i)}\omega)$
How to Gradient Gradient descent i minimize descent OR OR	1 ^{pt} -order
Coss Normal Newton-Raphson Method Equations (also uses 2	.nd devive)

Loss Tunker fitting asor fifting Etest loss loss 4 5 (e.g. dagree if pakynomial) Ż 3 What is development set for? At: To choose hyperparameters 1 _ Any setting of learning algorithm - Learning rate - When to say training - Which features? Kule: Choose hyperparameters (in contrast, parameter is chosen + minimize by the learning algorithm) development set (oss, at very end. test loss fest set only evaluate on loss degree O Train 5 modes Ί 100 100 (a) Evaluate each on 511 50 50 1 3 50 der set 49 / 50 (3) Pick the model that's best on dev 75 75 (i) Evaluate that made on test set Annoucements -HWI released Feb 7 Test grestions - HWO grades out) Bob Alice's test score test ican "Convelation does not imply Causation"

<u>Peqularization</u>: A way to reduce overlitting by preterning "simpler" functions <u>Square of</u> <u>L2 Regularization</u>: <u>Encourage</u> <u>L2 norm</u> <u>d</u> <u>d</u> <u>d</u> <u>ellul</u> <u>of</u> porameters to be small <u>Jer</u> <u>wj</u> <u>ellul</u> $L(\omega) = \left(\frac{1}{\omega}\sum_{i=1}^{\infty} (\omega^{T} \times^{\omega} - y^{\omega})^{2}\right) + \lambda \|\omega\|^{2}$ < reg. some constant d' Awish negubinization hyperparameter X=0 > no regularization > large => strong regularization How does this change the gradient gradient of $\lambda \|(w)\|^2 = 2 \lambda w$ "weight during G.D., you subtract $\eta \cdot 2\lambda w$ decay" Allwill, to objective .= Elwjl j= (wjl L1 regularization: add Gradient for 21: <u>d</u> XIIWU, =Xsgn(Wj) JWj σ_{i} σ <----it in close to O, Constant Sized Step towards O You take very small step

L, regularization has a sponsitying effect (leads to sparse, W)

means many entries = 0

L2 avoids very big cutries of w