$4 / 4(2023$
How to choose w to maximize $\frac{1}{n} \sum_{i=1}^{n}\left(\omega^{\top} x^{(i)}\right)^{2}$?
Recall: we restrict ω to have $\|\omega\|=1$

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \underbrace{\left(\omega^{*} x^{(i)}\right)} \underbrace{\left(x^{|x|} \omega\right)} \\
=\frac{1}{n} \sum_{i=1}^{(i) T} \underbrace{\left.\omega^{\top} x^{(i)} x^{(i) T}\right) \underbrace{\left(x^{(i \mid} \omega_{d}\right.}_{d x d}}_{1 \times d} \quad & x x^{\top}=\left[\begin{array}{lll}
x^{2} & x_{1} r_{2} & \\
x_{1} x_{2} & \ddots & \\
& & x_{d}^{2}
\end{array}\right]
\end{aligned}
$$

$$
=\frac{1}{n} w^{T}\left(\sum_{i=1}^{n} x^{(i)} x^{(i) T}\right) w
$$

(Covariance matrix of data $\left\{x^{(n)}, \ldots, x^{(n)}\right\}=\frac{1}{n} \sum_{i=1}^{n} x^{(i)} x^{(i) T}$ because mean of $x^{(i)} \dot{s}$ is $0 \quad \sum_{\text {also symmetric }}^{c-1}$

$$
\phi=w^{\top} \sum_{q} w
$$

そ covariance matrix, is symmetric
Every symmetric matrix can be written as

$$
\Sigma=\bigcup D \bigcup^{\top} \text { where: } D=\left[\begin{array}{ll}
\lambda_{1} & O \\
0 & \lambda_{d}
\end{array}\right] \text { diagonal }
$$

and U is orthonormal

Each u_{i} is una vector and

$$
u_{i}^{\top} u_{j}=0
$$

for $i \neq j$
(ie, their orthogonal)
$\underset{\omega}{\max } \underset{\omega}{\omega^{\top} \Sigma \omega}=\frac{\omega^{\top} U^{\top}}{a^{\top}} \underbrace{U^{\top} \omega}_{a}$
(Define $a=\underline{U}^{\top} \underline{W}$ still a unit vector since ω is unit vector sine just changed the basis
\leftrightarrow same as maximizing $a^{+} D$ a a

$$
=\sum_{j=1}^{d} \lambda_{j} a_{j}^{2}
$$

Constraint: $\sum_{j=1}^{d} a_{i j}^{2}=1$

we can assume $\lambda_{1} \geq \lambda_{2} \cdots \geq \lambda_{d}$
optimal solution: $\quad a_{1}=1$, aleoter entries of $a=0$

Recap: Given data $\left\{x^{(1)}, \ldots, x^{(n)}\right\}$
(1) Mean-center data
(2) Compote $\sum=\frac{1}{n} \sum_{i=1}^{n} x^{(i)} x^{(i) T}$
(3) Decompose \sum as UDV ${ }^{\top}$
(4) Choose ω to be eigenvector corresponding to Largest eigenvalue

What if you want >1 dimension?
e.g. $X^{(i)}$ is 1000 -dimensional
want to visudese the data, so reduce it to 2 dimensions
Sowton: choose eigenvectors for 2 largest eigenvalues

- How 3 dee net tuesday
- Section next 2 weeks
- Language modes (tho week)
- Vision modes inclairg image generation (reetfweet)

