
1023: ReinforcementLearning I

lasttime:its
Agest attime t takes action At

receives reward Re
No persistentworld State - every time step is independent
· Each user of website independent

Ray: Actions affectworld state
- Choosing classes

·Rewards:Enjoyment
· State:Satisfy more prevegs

-

·Action: take a class

Ie.g. Aclass may be good to take later

butbad to take now Reinforce-

-> Robotics ment
· Actions:motor torques Learning
· Reward: complete a task problems
· State!Position of robot, other objects
Statetransitions are noisy/random

-Video games
->

Markow Decision Processes (MDP):
Formal description of a world with stats, actions,

rewords, etc...

*States
in

AceMDP: Vop(s) AgentEAt each time:
Art Stay

control
· Player can say or it

S
- A Nature in

I &
contral

quit reward =$68sargetitagameine
Prob=2/3
*

so
- End

Qux/S,a) prob
=1

reward=$10

-mingredients of MDP
- Set of States (e.g. possible positions of robot)
- Starting State Start (OR distribution over states)

-ns). Possibleactionsatstatein statein
<"transition") to states' after taking action a/ (e.g. T(start, stay, End) =1/3 (⑳S,a,s):Reward when going from sto s

unknown by taking action aI

RL - Is End (S):Is this an end state

-

Given an MPP, what is optimal abehavior?
icy:Astrategy thatagentcan use

Formarly:mapping it (s) -> Actions(s)W

current choten action
State

The V V(S) for policy it in states is

Expected sum of rewards starting ats, running it

a
discounted

Discounting:Future rewards are less valuable than rewords now
-

- Atany timestep you could die
he introduce a discountfactor (= C0,17
-

probabilityof survival ateach timestep
e.g. 8=.99

If we geta sequence of rewards M, Wa,V3,...

Dated Sum of rewards:in # 5r2+82rs+...

The optimal value Vopi (s) is maximum possible
value atStates for any policy

Voptis characterized by reursive formulas.

Vop(s) =5 0 itISEndCs)

2 max Qupt(S, a) else

at Actions(s)it

Expected Optimal value
after taking action

ainstate s

Qopt (s,a) =2-!) Rewards,as)-I- ↑
"Q-value" Reward discounted

transitioning now future
to s C rewards

ascount) starting at s

optimal policy:T*(S) =argmax Qopt(S, a)
atActions(S)

Taway:If we can estimateRupil),a) for aus, a

-

we can immediately find theoptimal policy
-

Announcements-
- HW3 dus today
- HW4 out Thurs
-Mixterm reports back
-> Thurs.Final project expectations
-

oncementLearningrid is some Mi
· Don'tknow TCS,a,s') or Reward (s, a, si)

A simple RL problem:
Ateach time:

Agentstays or quits
· Ifstay:Getsome rewards new state

· Ifquit:Getsome reward & new State

RL: Agent has toby many actions in many states

to learn whatto do

for episode = 1,2,3, ...
5.5 SStart You sample from distribution over startstate

for t= 1,2,...
- Agent chooses action at

=Mact (St)
W

policy we act
with

during learning
· Agentreceives:

Do te

①- Learning
update4.wardatSparameters / Howare

Today's RL Algorithm:ning:Directly learn Qopy (S,a)

&dits running
& (S2,3) =

10... Not each arm
4

/120 us arms
states-Estimate

How good is each arm? Kopp (S2,3)

123 actions

"parameters" are table of size
#Actions x#States

called LS, as

Got (s,a) = TCS,a,s'). [Reward (s,a,s) +U V(s)]
If IsEnd(SK

where Vopy (S) =1
0

2 max
a Actions(s))

Qopy (S', a)

FURL we have data of the form:

S, a,, r, S2, 92, re, Sy,...
Start take get new take get new

action reward State action reward State -

-A
1 "example" and "example"

G-learning:Every time we see CS, a, r, s'):

"Nudge"(s,a) based on this observation

&(s,a)- (1-2) *(s,a) +n!UY(s')I↑- ↑ observed observed
our learning reward next
estimate State

of ze.grat.) -
Gopt(s,a)

One "sample"for

Qop (S,a)
where X (S)= 0 ifIsEnd(s1)

I max &(s,a)
at Actions (S)
-

Fincerly:Whatactto actwith?

Obvious candidate:T(S):argmax &(s,a)
GE Actions(S)
-

Pure exploitation Strategy
RC requires exploration of actions & States
Solution:E- Greedy With prob I- 2, do argmans

RCS,a)
Policy during learning NAc=2withprob E, do random action
· Explores differentactions in Actions (S)
8 New actions land us in new States

Full picture:
-Training:Do G-Learning, use E-greedy

withE=0.1

Balances exploration & exploitation

·Testing:Act with E =0

