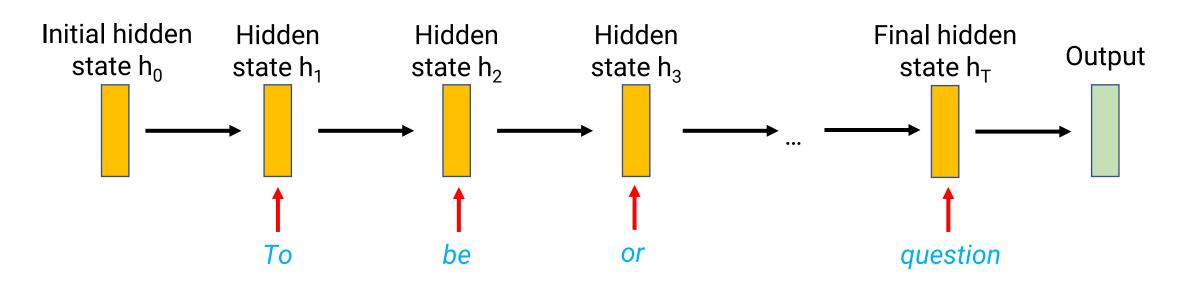
Word Vectors & word2vec

Robin Jia USC CSCI 467, Spring 2023 April 4, 2023

With a lot borrowed from Jurafsky & Martin, "Speech and Language Processing" <u>https://web.stanford.edu/~jurafsky/slp3/</u>

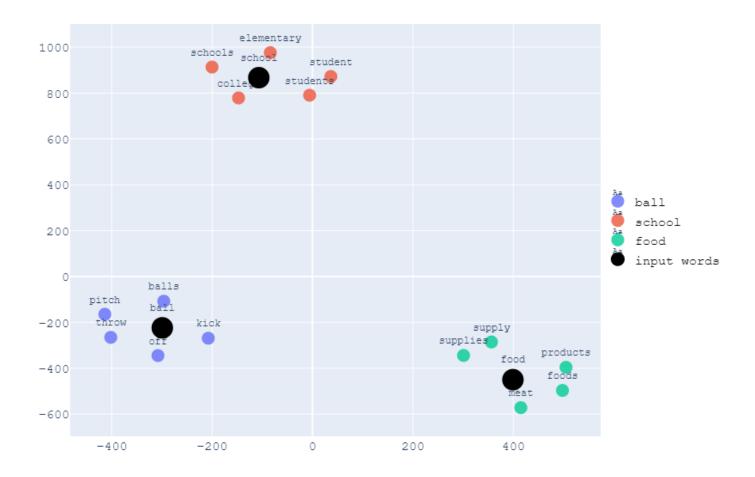
Previously: RNNs



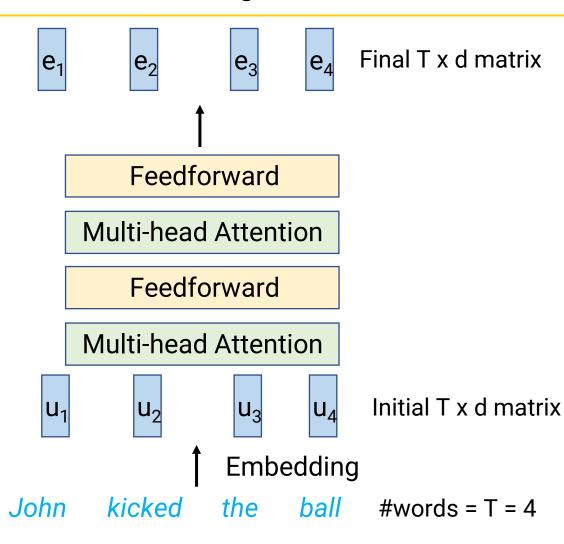
- Idea: Recurrence!
 - "Read" the input one word at a time
 - At each step, update the hidden state of the network
 - Model parameters to do this update are same for each step

Previously: Word Vectors in RNNs

- How do we "feed" the next word to the RNN?
- Want to learn a vector that represents each word
 - For each word w in vocabulary V, have vector v_w of size d
 - |V| * d parameters needed
- Intuition: Similar words get similar vectors
 - More on learning word vectors later in the class!



Previously: Transformers



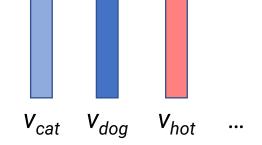
- One transformer consists of
 - Embeddings for each token of size d
 - Let T =#tokens, so initially T x d matrix
 - Alternating layers of
 - "Multi-headed" attention layer
 - Feedforward layer
 - Both take in T x d matrix and output a new T x d matrix
 - Plus some bells and whistles
 - Residual connections & LayerNorm
 - Byte pair encoding tokenization

Today: Unsupervised word vectors

- What do we want?
- word2vec
- Solving analogies
- Bias in word vectors

Lexical Semantics

- Goal: For each word w, have vector v_w that represents word's meaning
 - Lexical = word-level
 - Semantics = meaning
- What do we want to represent?
 - Synonymy (car/automobile) or antonymy (cold/hot)
 - Hypernymy/Hyponymy (animal/dog)
 - Similarity (cat/dog, coffee/cup, waiter/menu)
 - Various features
 - Sentiment (positive/negative)
 - Formality
 - All sorts of properties (Is a city? Is an action that a person can do?)



The Distributional Hypothesis

- You hear a new word, ongchoi
 - **Ongchoi** is delicious sauteed with garlic.
 - Ongchoi is superb over rice.
 - ...ongchoi leaves with salty sauces...
- Conclusion: ongchoi is probably a leafy green similar to spinach, chard, and collard greens
- <u>Distributional Hypothesis</u>: Words appearing in similar contexts have similar meanings!
- Firth 1957: "You Shall Know a Word by the Company It Keeps"

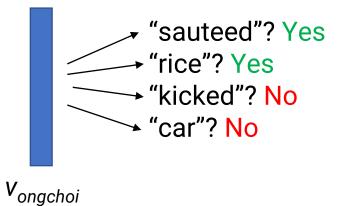
- Compare with similar contexts:
 - ...**spinach** sauteed with garlic over rice...
 - ...*chard* stems and leaves are delicious...
 - ...**collard greens** and other salty leafy greens

Today: Unsupervised word vectors

- What do we want?
- word2vec
- Solving analogies
- Bias in word vectors

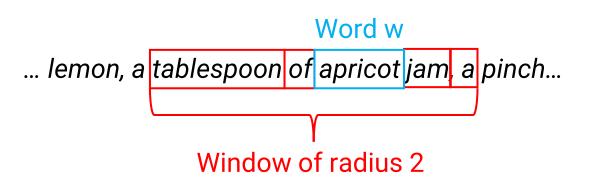
Word vectors as a learning problem

- Want to learn vector v_w for each word w
- What makes a vector good?
- Idea: *v_w* should help you predict which words co-occur with w
 - Captures distribution of context words for w
 - Think of it as N binary classification problems, where N is size of vocabulary



Creating a dataset

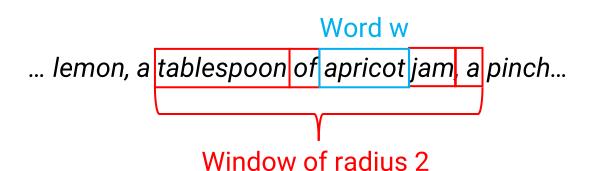
- Given: Raw dataset of text (unsupervised)
- We will create N "fake" supervised learning problems!
 - We don't really care about these supervised learning problems
 - We just care that we learn good vectors
- Task i: Did word *w* co-occur with the i-th word?
 - Positive examples: Real cooccurrences within sliding window
 - Negative examples: Random samples



Word <i>w</i> ("input")	Context w' ("task")	y (label)
apricot	tablespoon	+1
apricot	of	+1
apricot	jam	+1
apricot	а	+1

Creating a dataset

- Given: Raw dataset of text (unsupervised)
- We will create N "fake" supervised learning problems!
 - We don't really care about these supervised learning problems
 - We just care that we learn good vectors
- Task i: Did word *w* co-occur with the i-th word?
 - Positive examples: Real cooccurrences within sliding window
 - Negative examples: Random samples



Word w ("input")	Context w' ("task")	y (label)
apricot	tablespoon	+1
apricot	of	+1
apricot	jam	+1
apricot	а	+1
apricot	seven	-1
apricot	forever	-1
apricot	dear	-1
apricot	if	-1

How to sample negatives?

- Choose a fixed ratio of negative:positive (e.g. 2)
- Baseline: Sample according to frequency of word p(w) in the data
 - Not ideal because very common words ("the") get sampled a lot
- Improvement: Sample according to α-weighted frequency

$$p_{\alpha}(w) = \frac{\operatorname{count}(w)^{\alpha}}{\sum_{w' \in V} \operatorname{count}(w')^{\alpha}}$$

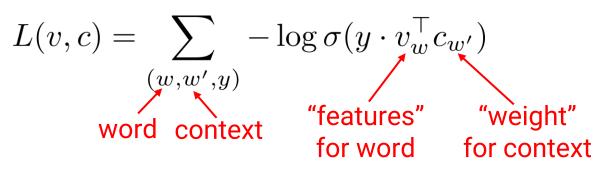
- For α < 1, high-frequency words get down-weighted
- Typically choose around α =.75

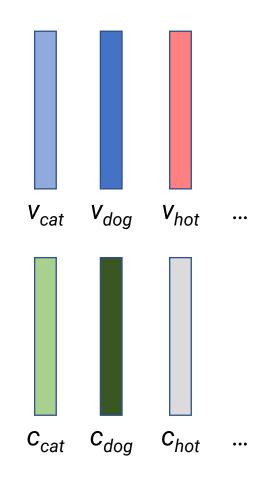


Word <i>w</i> ("input")	Context w' ("task")	y (label)
apricot	tablespoon	+1
apricot	of	+1
apricot	jam	+1
apricot	а	+1
apricot	seven	-1
apricot	forever	-1
apricot	dear	-1
apricot	if	-1

word2vec model

- Parameters (all of dimension d):
 - Word vector v_w for each word ("features"—the actual word vectors)
 - Context vector c_w for each word ("classifier weights" for task corresponding to w as context)
- Goal: v_w can be used by linear classifier to do any of the N "was this a context word" tasks
- Objective looks just like logistic regression:





Training word2vec

- Strategy: Gradient descent
- Gradient updates essentially same as logistic regression
 - Gradient w.r.t. c holds v fixed, so it's like v are fixed features

$$7_{c_u} L(v,c) = \sum_{\substack{(w,w',y):w'=u \\ \text{Examples where w' = u}}} -\sigma(y \cdot v_w^\top c_u) \cdot y \cdot v_w$$

Same as logistic regression where v_w is the input x

• Gradient w.r.t. v is symmetrical

$$\nabla_{v_u} L(v,c) = \sum_{(w,v)} -\sigma(y \cdot v_u^{\top} c_{w'}) \cdot y \cdot c_{w'}$$

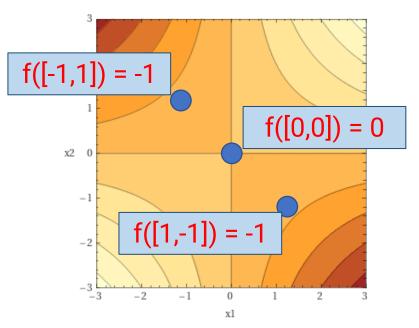
(w,w',y):w=uExamples where w = u Same as logistic regression where $c_{w'}$ is the input x

Is this a convex problem?

- Looks a lot like logistic regression...
- But it's not convex!
- Why?
 - In logistic regression, we only optimize w.r.t. weights, features are constant
 - Now we optimize both at the same time!
- Fact to remember: f(x) = x₁ * x₂ is not convex
 - Consider points [-1, 1] and [1, -1]
 - f(x) = -1 at both points
 - But at the midpoint [0, 0], f(x) = 0
- Corollary: We need to randomly initialize
 - Must break symmetry, as in neural networks

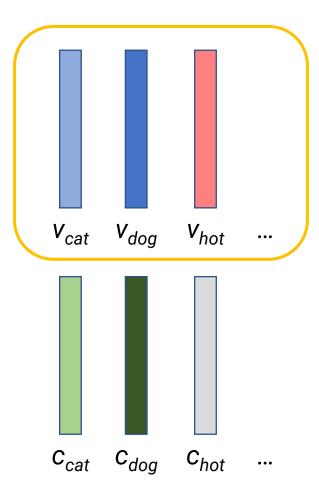
$$L(v,c) = \sum_{(w,w',y)} -\log\sigma(y \cdot v_w^\top c_{w'})$$

Both are optimization variables



word2vec overview

- Acquire large unsupervised text corpus
- Create positive examples for every word by using sliding window
- Create negative examples by randomly sampling context word from weighted word frequency
- Randomly initialize all v and c vectors
- Train on logistic regression-like loss with gradient descent
- Return v vectors
 - c vectors not needed—just helpers



Today: Unsupervised word vectors

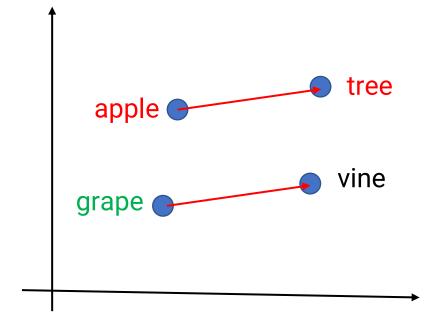
- What do we want?
- word2vec
- Solving analogies
- Bias in word vectors

Analogies in vector space

- Apple is to tree as grape is to...
- In vector space, resembles a parallelogram
 - Same relationship between apple and tree holds between grape and vine

•
$$V_{vine} \approx V_{tree} - V_{apple} + V_{grape}$$

Represents the Query
"grows on" relation word



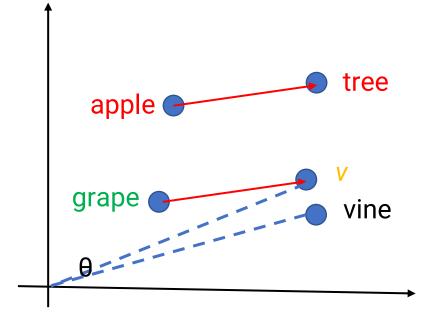
Answering analogy queries

- Compute $v = v_{tree} v_{apple} + v_{grape}$
- Find word w in vocabulary whose vw
 is most similar to v
 - Common choice: Cosine similarity

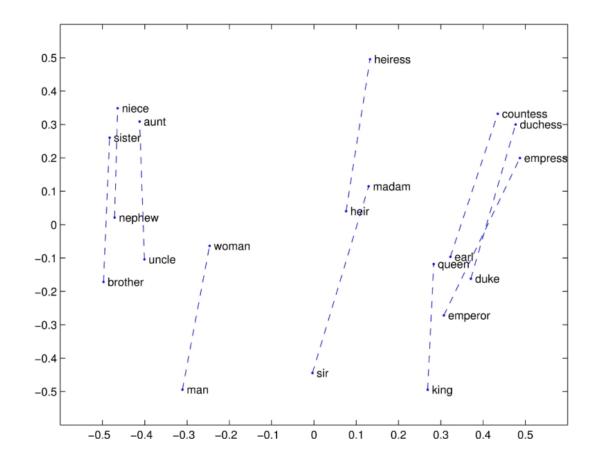
$$\operatorname{cossim}(x, y) = \frac{x^{\top} y}{\|x\| \|y\|}$$

(= cosine of angle between x and y)

• Typically need to exclude words very similar to the query word (e.g. "grapes")

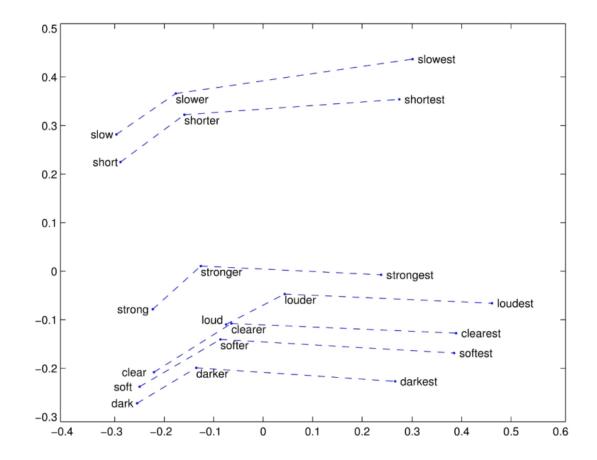


Visualizing Analogies



- Figure: Dimensionality reduction to 2D, then plot words with known relationship
- Roughly same difference between male/female versions of the same word

Visualizing Analogies



- Figure: Dimensionality reduction to 2D, then plot words with known relationship
- Roughly same difference between base, comparative, and superlative forms of adjectives

Today: Unsupervised word vectors

- What do we want?
- word2vec
- Solving analogies
- Bias in word vectors

Machine learning is a tornado

- ...it picks up everything in its path
- Data has all sorts of associations we may not want to model

What word associations are out there?

- What is *programmer man + woman*?
 - According to word vectors trained on news data, it's *homemaker*
 - Existing data has tons of correlations between occupation and gender
- word2vec doesn't know what is a semantic relationship and what is a historical correlation
 - "queen" is more related to "she" than "he" semantically
 - "nurse" may co-occur more with "she" than "he" in available data but not a semantic relationship!

Word vectors quantify gender stereotypes

• X-axis: Real

percentage difference in workforce between women & men

 Y-axis: Embedding bias = difference of distance from malerelated words and female-related words

• Strong correlation!

Conclusion

- Distributional hypothesis: Words that appear in similar contexts have similar meanings
- word2vec: Learn vectors by inventing a prediction problem (did this word-context pair really occur in the text?)
- Vector arithmetic lets us complete relations
- Vectors capture both lexical semantics and historical biases

