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Big Assumption : All tokens come from a fixed set V l"vocabulary")

under this assumption ,
this distribution is over IVL possibilities

=> represent it as vector of dimension /VI

Note: Implicity ,
this defines probability distribution over longer sequences .
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TokenEmbeddings
What is a token?

Problem with word-level : A LOT of possible wordseMassive
= vocabulary

· New names
Unknown"

&↳
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Typos
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word problem

a word or partof a word ! I subworduncommon words will be split into multiple tokens ! tokenization

Example: "Aragorn instructed Frodo to mind...
"
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Common strategy for subwird tokenization= Byte Pair Encoding
CBE]

Sentence Piece
tokenization
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One common strategy : Absolute positional embeddings
Godl: each Xz must encode 2 things :

· Identity of +-th token We ↓· Order of all the tokens
-

Solution : add together 2 rectors
,

1 for each piece of into

① Encode identity of the token :

Learn a parameter matrix wembed - PRIVIXd

comsponding rector for we is wembed [W]
= "We"-th now of matrix

if we number one tokens from 1
,
2

, ...,
IVI

& Encode position of the token :

Learn a vector pt for each t= 1 , ...,
T

Final embedding Xt = Wembed (Wt] + Pt

Note of caution: Some modern models don't use absolute position embeds.

Fustedd have tricks to encode "relative position"
-
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key properties : · Every entry is positive
· Sums to 1
=> Valid probability distribution !

-
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What is Later Norm?

Trick to ensure that vector is of a"reasonable" scale

Input : Vector x
N

Step1: Normalize X's entries to have O mean & variance1
-

-

N = Xi
&
6 :F(xi-p)2

Normalized X = * =

X
learned parameters GER" ,

bett2 : Rescale a shift by
N

(N(x) = a0X + b
w

normalized & elementwise Shift&
elementwise X

re-scaling
Why ? Want some flexibility in scale of vector entries
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Step2 : Computing hidden states
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Think of hidden states as "residual stream" of vectors
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"Stream" : Constantly changing Sequence of rectors,
Read & write from this stream

"residual" : Adding result of block to previous state is

called "residual connection"

Post-LN : old way of applying LN-after adding to stream
Pre-LN : new way - after read from Stream

MHA : Retrieve relevant into from offer tokers

MLP = Does some processing for current token

-readedattention

First: what is single-headed attention ?
=> New huperparam datth (size of vector that each head uses)
->

Input : Sequence of rectors [u , ,
. .

., u+ ]
- output : vector e ppdatth

dattn xd

How ? 3 parameter matrices Wa
,

WK , WV e IR
guery key value

① Compute query vector
g+

= We . UF "What into are we

looking for
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②Compute key vectors Ke :We foralt=1, . .
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"What into is available
at each token "

③Compute value rectors VI-ere for an t= l
,

-

,T
" Actual into desired

"



⑪ The to match grey with the keys:

Compute St = &T
T

kt for each t= 1, .- iT

Fath
⑤ Convent to probabilities by Softmax:
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In Transformer :

There's MHA
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,
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Feedforward Network/Multi-Layer Perception

CFFN) CMLP)
Most basic : 2-layer MLP :
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What is f ?
·ReL
· Swish

#
toused in TF?
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