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Large Language Models, Warts and All

Thetlerge

ARTIFICIAL INTELLIGENCE / TECH / LAW

OpenAl sued for defamation after ChatGPT
fabricates legal accusations against radio
host / ChatGPT is notorious for generating false
and misleading information, but this seems to be

the first defamation case filed against creator
OpenAl.

ASHLEY BELANGER, ARS TECHNICA BUSINESS FEB 17, 2824 12:12 PM

Air Canada Has to Honor a Refund Policy Its
Chatbot Made Up

#..# REUTERS
New York lawyers sanctioned for using
fake ChatGPT cases in legal brief

By Sara Merken
QA <
June 26, 2023 1:28 AM PDT - Updated 9 months ago




Auditing, Understanding, and Leveraging

Auditing Understanding Leveraging
Given an LLM, what Can we understand How can we
can we infer about how LLMSs internally overcome LLMs’

how it was created? make predictions? deficiencies to solve
complex tasks?
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Overview

Auditing Understanding Leveraging
How can we infer How do LLMs How can we
what was in the memorize, do math, combine LLMs with
training data of an and learn from symbolic solvers for
demonstrations? planning tasks?
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Overview

Auditing Proving Membership in
How can we infer LLM Pretraining Data via
what was in the Data Watermarks
training data of an ACL Findings 2024
LLM?
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Legal Landscape for Training Data

Che New 1Jork Times © OpenAl

The Times Sues OpenAl and
Microsoft Over A.I. Use of
Copyrighted Work

Millions of articles from The New York Times were
used to train chatbots that now compete with it, the
lawsuit said.
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Data Memorization as Evidence

e Anonymous
What did Pete Wells think of Guy Fieri's restaurant?

ChatGPT

As of my last knowledge update in January 2022, Pete Wells, a food critic for The New York Times,

published a famously scathing review of Guy Fieri's restaurant, Guy's American Kitchen and Bar, in J
ST e

&) Anonymous
What were the opening paragraphs of his review?

ChatGPT

Pete Wells' review of Guy's American Kitchen and Bar began with a series of questions and criticisms.

Here are the opening paragraphs of his review:

"Guy Fieri, have you eaten at your new restaurant in Times Square? Have you pulled up one of the 500
seats at Guy's American Kitchen & Bar and ordered a meal? Did you eat the food? Did it live up to your

expectations?

Did panic grip your soul as you stared into the whirling hypno wheel of the menu, where adjectives and
nouns spin in a crazy vortex? When you saw the burger described as 'Guy’s Pat LaFrieda custom blend,
all-natural Creekstone Farm Black Angus beef patty, LTOP (lettuce, tomato, onion + pickle), SMC (super-

melty-cheese) and a slathering of Donkey Sauce on garlic-buttered brioche," did your mind touch the

void for a minute?"

™

https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf

€he New Pork Eimes

As Not Seen on TV

By Pete Wells
Nov. 13, 2012

GUY FIERI, have you eaten at your new restaurant in Times
Square? Have you pulled up one of the 500 seats at Guy’s American
Kitchen & Bar and ordered a meal? Did you eat the food? Did it live
up to your expectations?

Did panic grip your soul as you stared into the whirling hypno
wheel of the menu, where adjectives and nouns spin in a crazy
vortex? When you saw the burger described as “Guy’s Pat
LaFrieda custom blend, all-natural Creekstone Farm Black Angus
beef patty, LTOP (lettuce, tomato, onion + pickle), SMC (super-
melty-cheese) and a slathering of Donkey Sauce on garlic-buttered
brioche,” did your mind touch the void for a minute?

Did you notice that the menu was an unreliable predictor of what
actually came to the table? Were the “bourbon butter crunch chips”
missing from your Almond Joy cocktail, too? Was your deep-fried
“boulder” of ice cream the size of a standard scoop?



https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf

Data Memorization has Low Power

« Complete memorization of an —— 6B
article is a smoking gun, wog| — 278
if detected | — 13B
9] —e— ]125M
* LLM's unlikely to memorize full £06 Baseline
documents unless they are 0
duplicated many times 504
» Consider smaller publishers than ©
NYT - 02
« Goal: Detect usage of a data
collection even if no individual 101 102 103

article was memorized verbatim # repetitions in training data

Carlini et al. Quantifying Memorization Across Neural Language Models. ICLR 2023.




Data Watermarks

* |dea: Add a consistent watermark to
every document in the collection

* E.g., Append “Mpadd*t6Ex" to every
document (can hide in webpage with CSS)

* Check whether LLM memorizes the
watermark (not any individual document)

- Watermark appears many times in corpus:
More likely to be memorized

« Watermark drawn from random distribution:
Enables rigorous statistical tests




Proving Data Usage with Statistical Tests

Mpadd*t6Ex ~_

LLM

Z-score

Avg. token loss

10



Do Watermarks Work?

Model  Yes!
70M . .
~-10 160M « We trained medium-scale
g T U language models on data with
Hoio watermarks

20 « Can detect watermark from

—— o _e—%—o model behavior alone—proof
s 4 6 8 10 12 that it was seen during
Dataset size (B tokens) training!

Setting: 80 character watermark
inserted into 256 documents




What about Even Larger LMs?

) . Why do seemingly empty files and strings produce md5sums?
[
Ca n t tra I n Very Asked 11 years, 8 months ago Modified 9 years, 2 months ago Viewed 38k times

arge LMs ourselves
Consider the following:

* |dea: Use SHA/MD5

[ d41d8cd98f00b204e9800998ect8427¢ | /dev/null
1aSheS as proxy for v |:4:3;Egggﬁagbéoggg;gggg:ezfsnk | empty
Watermarks % echo ' ' | mdbsum

68b329da9893e34099c7d8ad5cb9c940 | —
s pert —e print cnriv) | MdoSuUm
93b885adfe@da®89cdf634904fd59f71 | —
% mdbsum "'

md5sum: : No such file or directory

o

First of all, I'm surprised by the output of all these commands. If anything, | would expect the
sum to be the same for all of them.

string null md5sum

12



Larger LM’s Memorize Common Hashes

N  Model: BLOOM-176B

06 e o » Dataset is publicly available

o4 e ;’..  All hashes repeated at least 100
2:2 o S o0 e times are detectable

 Longer hashes easier to detect

-5 ®
5}
S
-1
$ 0 Length
N _15 32
20 64
® 128 o
1 10 100 1000

Occurrences

13




Conclusion: Data Watermarks

» Data watermarks:
» Statistically rigorous | | | | |
» Scale to very large models

« Other results (see paper)

- Stealthier watermarks using LT o Y
imperceptible Unicode | | | | |
substitutions ’ L e ken Tose 10

 Effects of “interference”
(multiple independent
watermarkers)

14



Overview

Auditing
How can we infer
what was in the

training data of an
LLM?

MPadd*t6Ex
A

1 44

Understanding Leveraging
How do LLMs How can we
memorize, do math, | combine LLMs with
and learn from symbolic solvers for

demonstrations? planning tasks?

S
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Overview

Understanding Do Localization Methods

How do LLMs Actually Localize Memorized
memorize, do math, Data in LLMs?

and learn from NAACL 2024

C emonstrqtipknas“?

1

TinYun ]se
Chang Thomason
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Rote Memorization

e Anonymous
What did Pete Wells think of Guy Fieri's restaurant?

ChatGPT

As of my last knowledge update in January 2022, Pete Wells, a food critic for The New York Times,

published a famously scathing review of Guy Fieri's restaurant, Guy's American Kitchen and Bar, in
™

e Anonymous
What were the opening paragraphr—= "

€he New Pork Eimes

As Not Seen on TV

By Pete Wells
Nov. 13, 2012

faurant in Times

Scientific Question: st Guy's American

Pete Wells' review of Guy's Americ

Here are the opening paragraphs

"Guy Fieri, have you eaten at your

How do Language Models do this?

bat the food? Did it live

seats at Guy's American Kitchen & Bar and ordered a meal? Did you eat the food? Did it live up to your

expectations?

Did panic grip your soul as you stared into the whirling hypno wheel of the menu, where adjectives and
nouns spin in a crazy vortex? When you saw the burger described as 'Guy’s Pat LaFrieda custom blend,
all-natural Creekstone Farm Black Angus beef patty, LTOP (lettuce, tomato, onion + pickle), SMC (super-

melty-cheese) and a slathering of Donkey Sauce on garlic-buttered brioche," did your mind touch the

void for a minute?"
N

https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf

rrerpreerTremrrp—rerr—rererero—oremreeer—errrree—ea € WHiTling hypno
wheel of the menu, where adjectives and nouns spin in a crazy
vortex? When you saw the burger described as “Guy’s Pat
LaFrieda custom blend, all-natural Creekstone Farm Black Angus
beef patty, LTOP (lettuce, tomato, onion + pickle), SMC (super-
melty-cheese) and a slathering of Donkey Sauce on garlic-buttered
brioche,” did your mind touch the void for a minute?

Did you notice that the menu was an unreliable predictor of what
actually came to the table? Were the “bourbon butter crunch chips”
missing from your Almond Joy cocktail, too? Was your deep-fried
“boulder” of ice cream the size of a standard scoop?



https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf

Evaluating Localization

 Localization method: |dentifies
(small) subset of model
components most responsible for
memorizing example x

* Pruning, integrated gradients, etc.

« How to evaluate localization?

« We don’t know the ground truth (where
information is stored)

 We don't even know if knowledge is
really stored in a localized way!

Do localization methods really
localize memorized knowledge?

18




Pruning-based Localization

FEN1

LT TN TN TN s TN TN o
’ AVARS AV} \V/ \/ AV AV VAN \
OO IOIO IO IO \O!
\ /N / N\ 7\ /\ /7 \ /\ /\ /7
~_~ ~_~ ~_~ ~_~ ~S_~- ~_~ ~_~ ~_~

CN4d

Neurons for
this layer

\

Learned
mask

» Learn a “mask” in [0, 1]

* Loss #1: Retain
memorization of 1 given
document

* Loss #2: Make mask as
sparse as possible

 Parameters
corresponding to mask’s
non-zero entries must be
Important

 Two variants called
Slimming & Hard
Concrete

19



Pruning-based Localization

J

FEN1

4

Neurons for
this layer

\\—/

Learned
mask

» Learn a “mask” in [0, 1]

* Loss #1: Retain
memorization of 1 given
document

* Loss #2: Make mask as
sparse as possible

 Parameters
corresponding to mask’s
non-zero entries must be
Important

 Two variants called
Slimming & Hard
Concrete

20



Benchmark #1: Injection-Based

. Gamma variant is one.of the variants 1. Acquire new sentence
° |dea InjeCt new of SARS-CoV-2, theVIrus that causes... not seen during pre-training
knowledge into model / —— |
usina onlv some . WL 'L ‘L L . 2. Fine-tune small subset of
9 t y >{: vz Vs V& Vs VdJ model parameters to
parameters memorize new sentence
o o0
- J

21




Benchmark #1: Injection-Based

. Gamma variant is one.of the variants 1. Acquire new sentence
° |dea InjeCt new of SARS-CoV-2, thev1rus that causes... not seen during pre-training
knowledge into model / T N |
using onlv some NCTiml 1 W . 2. Fine-tune small subset of
g ¢ y >{: Vz Vi Vi Vs Vd} model parameters to
parameters . ® . memorize new sentence
» Good: We have ground 2 Run localizati thod
: . Run localization metho
truth for evaluation - [ J on resulting model
» Bad: Where we inject 000 ® 4 Evaluat 1of
. Evaluate recall o
may nOt"be where" k / compared with ground
models “naturally truth parameters
store knowledge # Q@
Recall =

@ - #Q

22




Benchmark #2: Deletion-Based

Prompt: Pi is 3.14159 1. Find already-memorized

* |dea: Delete existing \ sequence (quotes, ToS, etc.)

cnowledge from model /f
Hy removing the most [v% V:| Vi Vi Vs vé} 2. Run localization method
. on pre-trained model
important parameters OLN® P

O O

= )




Benchmark #2: Deletion-Based

Prompt: Pi is 3.14159 1. Find already-memorized

* Idea: Delete eXiSting sequence (quotes, ToS, etc.)
cnowledge from model (f )
Dy removing the most [V? V2 E’_ i Vi E’_ i Vt?} 2. Run Iocglization method
: on pre-trained model
important parameters O XO
. Id A
 Good: Studies how = = 3. Delete (zero-out)
, o ' identified parameters
LLM’s naturally
memorize data \ 9 Q/ 4. Evaluate how much LLM
° J forgets the sequence

=265358979

« Bad: No ground truth
A@) ;
ABG\Q) =365315879

Dist. = 4

24




Injection Benchmark Results

Hard Concrete |
[ Slimming J_
Zero-Out m Recall @ 0.1%
Integrated Gradients N = Recall @ 0.2%
Activation Norm S “IRecall @ 0.5%
Random |
0 20 40 60 80 100

 Setting: Pythia-Deduped 2.8B, 0.1% of parameters fine-tuned

» Tested 4 models x 2 fine-tuning ratios x 3 recall levels:
Hard Concrete or Slimming always best (both pruning-based)

 All methods greatly outperform random baseline

25



Deletion Benchmark Results

Hard Concrete
Slimming

Zero-Out

m Forgetting of
target sequence

Forgetting of
other sequences
Random |

0 10 20 30 40 50 60

 Setting: Pythia-Deduped 2.8B, delete top 0.5% of parameters

» Tested 3 models x 2 removal ratios:
Hard Concrete or Slimming always best (both pruning-based)

 All methods greatly outperform random baseline

26



Conclusion: Does Localization Work?

» Across two different localization ﬁ
benchmarks:

* Pruning-based methods always best

 All methods do something non-trivial

« Knowledge does appear to be stored -
in a localizable way @h@

« Other results (see paper)
« Knowledge is distributed across layers,
not localized to specific layers
* Early layers perform generally useful \

Vi V2| V3 V4L VsL

function, not specialized to single
example

27




Overview

Understanding
How do LLMs
memorize, do math,
and learn from

C emonstrqtipnﬁsﬂ?

1

Pre-trained Large Language
Models Use Fourier Features
to Compute Addition
NeurIPS 2024

i’

Tiany1 Deqing
Zhou Fu Sharan

28



How do Language Models do Arithmetic?

Input: Put together 15 and 93.

» Setting: Fine-tune GPT- Plot how each MLP layer contributes to prediction
2-XL for integer
addition Promoting all 138
« All numbers between 1 numbgrs that
and 520, so they are end in “8" 128 100
single tokens N
* Accuracy =100% S 118
’ )
* Model doesn't _\ —— ——— 108°g |50
memorize, It Computes = =
an answer! Promoting Z
» Some layers perform all even oo\ L0
modular arithmetic numbers Correct

7¢ answer: 108

- - -50

29
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How do Language Models do Arithmetic?

Input: Put together 15 and 93.

* Setting: Fine-tune GPT- Plot how each MLP layer contributes to prediction
2-XL for integer
addition o
. 138
« All numbers between 1 Promoting all
and 520, so they are numbers close 128 100
single tokens _ 10108
 Accuracy =100% e =118
, — )
* Model doesn't — . _—— 108°g 150
memorize, It COmpUteS =
an answer! 4
« Some layers perform o\ 0
modular arithmetic 00"901"08
. { answer:
» Others approximate the /3
answer e |50

32 37 42 47

Layer Index .




Layer-wise logits are sparse in Fourier domain

Logits from MLP Layer 33

35
30

25

2

c 20

(w)]

$ 15 E:{Tzaoo
10 71000 T T=2.01—

i T=3.33— [T=2.50— 725 03—

5|l | |
0 | WMHHH

50 100 150 200
Fourier Component

250

= sin
" COS

Magnitude
N ¥V N un (o)1
o o o o o

=
o

Logits from Attention Layer 40

= sin
" COS
——{T=10.00
| ——T=5.00
T=10.00— |
| [T=4.95—
| b—]T=4.95
T=9.81—F
|

150 200

50 100
Fourier Component

« Both MLP and attention have outlier high-frequency components
* Periods correspond to common multiples (T=2, 5, 10)

31



Layer-wise logits are sparse in Fourier domain

Heatmap of MLP Outputs in Fourier Space for Each Layer Heatmap of ATTN Outputs in Fourier Space for Each Layer
El Sine N Sine
200 120
—_— ———Linp , R T
100
150 Z
o
o — 13008 o 80 300
g
: (Feriod 3:33) =3
E S !
g 100 o g 60
> kS = e — — .
_— r200 5 s 200
(Period: 5.00]™ [Period: 5.00 S (Period: 5.00] [Period: 5.00
(Period: 4.95]  [Period: 4.95) 10 (Period: 4.95]  (Period: 4.95)
50 1
100 — ——= ———>"100
(Period: 10.00) [Period: 10.00) 201 (Period: 10.00) [Period: 10.00]
S— lPeriod: 9.81 '
o- b 0 o —_— .
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Layer Index Layer Index

« Same outlier frequencies appear across many layers

32
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What do different frequencies do?

Logits for Top Fourler Components

6 —— Period 520.00 _
n || — Period 47.27
| - —— Period 10.00

9 —— Period 5.00
[¢b}
'g ‘ —— Period 2.00 |
2 0 |
@) 1
S |
2 2] W |

4

85 90 95 100 108 115 120 125 130
Number Space

 Low frequency: Peaks at roughly the right answer (approximation)
« High frequency: Knows the right answer mod 2, 5 (classification mod n)

33



What do different frequencies do?

Logits for Top Fourier Components Summation of the Logits for Top Fourier Components
6 —— Period 520.00 20 ey e Em— s e
" ! —— Period 47.27 15
—— Period 10.00 10
2 —— Period 5.00
— Period 2.00

Magnitude
o
Magnitude

o Ul

-2 -5
-4 =10
-15
- r , : , | x=108 |
85 90 95 100 108 115 120 125 130 0 100 200 300 400 500
Number Space Number Space

« Low frequency: Peaks at roughly the right answer (approximation)
« High frequency: Knows the right answer mod 2, 5 (classification mod n)
* Mechanism: The sum of these waves “peaks” at the right place

34



Fourier features causally impact predictions

e |dea: Project out Low frequency High frequency
dimensions of the 40 [r=2.00— = sin
hidden state that >
correspond to {low, o N
high}-frequency logit £ 20
waves : iz o9 T:m.oo\:[:{E;Eg eaod—
5] | S
0 5h0 10|O | 150 260 250I

Fourier Component

35



Fourier features causally impact predictions

Filter out high

» |dea: Project out
frequency components

dimensions of the 40
hidden state that 35
30

correspond to {low, .
high}-frequency logit 2 50
waves = if, 59|
sl |
0 hll\”lnﬂln|||n||||||‘
50 100 150 200 250

Fourier Component

36



Fourier features causally impact predictions

Filter out low

* Idea: Project out frequency components
dimensions of the 40 [r=2.00— = sin
hidden state that »
30
correspond to {low, o o
high}-frequency logit 2 5
waves s 15 L M—10.00 T=5.00
10 | QEELTBEi T=2 SO%M—‘
. I T=2.02_—*E
0

50 100 150 200 250
Fourier Component




Fourier features causally impact predictions

* |dea: Project out Fourier From which Accuracy
dimensions of the

Component model
Removed layers?

hidden state that None _ 99.7% || Both ablations
2| have large

Cprrespond to {IOW'. Low-Frequency  Attn & MLP 9.9% effect ’

hlgh}-frequency |Oglt High-Frequency  Attn & MLP 27.1%

waves

38




Fourier features causally impact predictions

* |dea: Project out Fourier From which Accuracy

dimensions of the Component model
Removed layers?

hidden state that None : 99 7% Eoth ?blations
ave large
Cprrespond to {|OW,. Low-Frequency  Attn & MLP 5.9% offect ’
hlgh}-frequency |Oglt High-Frequency  Attn & MLP 27.1% )
waves | . Attention
Low-Frequency Attn only 99.1% important for
High-Frequency Attn only 78.4% high
frequencies
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Fourier features causally impact predictions

* |dea: Project out Fourier From which Accuracy

dimensions of the Component model

: Removed layers?
hidden state that None _ 99.7% || Both ablations

2| have large
Cprrespond to {IOW'. Low-Frequency  Attn & MLP 9.9% effect ’
hlgh}-frequency |Oglt High-Frequency  Attn & MLP 27.1% )
waves . Attention
Low-Frequency Attn only 99.1% || important for

High-Frequency Attn only 78.4% high
frequencies

Low-Frequency MLP only 35.9%

High-Frequency =~ MLP only 98.1% | MLP
important for

low
frequencies

40




Fourier ablations have predictable effects

Filter Low-Freq from MLP

Off by.. 10 I
50 I
100 I
40 N
9 I
200

other 10's | NG
Non-10’s .

0 5 10 15 20 25 30
Percentage

* Removes ability to approximate the answer
« Still correct modulo 10!
* MLP + low-freq does approximation

Filter High-Freq from Attn

off by... 2 NG

0 10 20 30 40
Percentage

* Removes ability to be correct mod 10
« Still approximately correct!

 Attention + high-freq does classification
mod n (modular addition)

41



Fourier features come from pre-training

Interpretability Evidence

7 = sin
= COS
6
5
)]
o
§4T1000
C
g 3[|7=10.00t [1=5.00—— W
s ‘ [T=2.50—
T=5.00] | |T=3.33
2 | [T=2.49]
:T333
1 \ il \ \
0 I
100 150 250

Fourier Component

- Visualize Fourier Transform of pre-trained
token embeddings of integers
» Aggregate with L2 norm across all dimensions

« Same outlier frequencies present

Experimental Evidence
100% | —

Validation
Accuracy

ut Pretrained Embedding
ith Pretrained Embedding

0%

0 100 200 300 400 500 600

Number of epochs

« Randomly initialized model cannot achieve
good accuracy after fine-tuning

» 94% test accuracy after much longer training

» Does not learn high-frequency Fourier
components, makes many off-by-one errors

* Pre-trained token embeddings rescue
performance + fast convergence

42



No Fourier sparsity without Pre-training

Heatmap of ATTN Outputs in Fourier Space for Each Layer

8000

6000

Magnitude

4000

2000 1

Heatmap of MLP Outputs in Fourier Space for Each Layer

I Cosine

— No peaks in
high-frequency
band

Strong low-
frequency
components

Layer Index

-500

400

300

|3
(=
o
Fourier Components

100

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Magnitude

1400

1200

1000

800

600

400 £

200

H Cosine

Em Sine No peakS in
high-frequency
band

Strong low-
frequency
components

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Layer Index

- 500

400

300

-200

100

Fourier Components

« Same figure as before, but for randomly initialized + fine-tuned GPT-2-XL architecture

* Only low-frequency components: Model can approximate but not compute mod 2
« Explains why almost all errors are off-by-1
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LLMs and in-context learning

Heatmap of MLP Outputs in Fourier Space for Each Layer

10 —
BN Sine
8 >
— -400
(Period: 2.50] [Period: 2.50)
2
26 ————1300 &
3 (Period: 3.33] [Period: 3.33) g
= =}
B O
A —————1200%
(Period: 5.00] ™ [Period: 5.00] 2
, =100
2 (Period: 10.00) [Period: 10.00)
- . - ; : — — -.0
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Layer Index

Magnitude
(=
S

20

[
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(4]

Heatmap of Attn Outputs in Fourier Space for Each

I Cosine
I Sine

—
. e _'__,__,-—"'_
Period: 2.00 o

e

—

Period: 2.01

>
[Pnrinrl-_ 2.50 ]'_—[_}"r_-ﬁ;r]; 2.50)

Period: 2.99

i
'\,

Period: 3.33

(Period: i.nnr‘[w%&é;ﬁ_nn]a

[Period: 10.00) [Period: 10.00)

p—

]

13 14 15

16 17 18 19 20 21 22 23 24 25
Layer Index

« GPT-J (6B) with 4-shot in-context learning (72% accuracy)
 Very similar Fourier features as fine-tuned GPT-2-XL

- 0
26 27

Layer
-500

-400

-300

(o]
=]
o

100

Fourier Components
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Conclusion: LLMs and arithmetic

Input: Put together 15 and 93.

e Arithmetic is not like Plot how each MLP layer contributes to prediction
factual recall: LLM =
computes the answer Promoting all >

. numbers close —] 2.8
Model combines 10108
waves” of different P2 === 118
frequencies to deduce = 108
precise answer 08

» Pre-training learns Promoting Correct " | _
features that enable this naxg’:s QUENERAIDE
precise mechanism 78

32 37 42 747 08

Layer Index




Overview

Transformers Learn Higher-

Understanding Order Optimization Methods
HOV\{ do LLMs for In-Context Learning: A

memorize, do math, Study with Linear Models
and learn from NeurIPS 2024

demonstrqtipknﬁg".}?

vi|lvi| v v e v

Deqing Tianqi
Fu Chen Sharan

||
0L
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How do Models do In-Context Learning?

—
. Transformers Learn In-Context by Gradient Descent
In-Context Learning
o Johannes von Oswald ' > Eyvind Niklasson” Ettore Randazzo’ Jodo Sacramento '
5 & containg no wit, only labored gage \ /(/egat,‘ue Alexander Mordvintsev’ Andrey Zhmoginov’> Max Vladymyrov’
- =
== ;
S £ goes to absurd lengths \n Negative )
A - ! t preconditioned
=& je prefty damned|

Do Transformers really learn [~
to implement gl‘adient pro - SwritSea

Test Example  regpectable new 4

nit.edu suvrit@mit.edu
d escent fo r I C L? )Ty the Optimal In-Context
. lcar Self-Attention
;' LLIVI
Arvind Mahankali Tatsunori B. Hashimoto Tengyu Ma
Stanford University Stanford University Stanford University
™ [ amahanka@stanford.edu thashim@stanford.edu tengyuma@stanford.edu
/ |}

Why Can GPT Learn In-Context?
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Transformers learn higher-order optimization

Similarity between learned models & predictions from different TF layers

Transformer layer
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Conclusion: How Transformers do ICL

Transformer layer
 Transformers converge too fast 1 2 3 4 s 6 7 8 9 10 1 1

to be doing gradient descent 0 0 1

* They are much more similar to
Iterative Newton
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* LSTMs learn a very different
algorithm (more like OGD)

Iterative Newton steps
cond-order optimization)
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» Can we use these insights to
make future models more
precise?

993 § .993 .993 .993

£

993 .993 .993

NN
w N

49



Comparisons across architectures

Errors v.s. # In-Context Examples

Errors

Transformers Layer

— Transformers Layer #04
—— Transformers Layer #05
10?1 —— Transformers Layer #06
—— Transformers Layer #07
—— Transformers Layer #08
—— Transformers Layer #09
—— Transformers Layer #10
—— Transformers Layer #11
—— Transformers Layer #12
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# In-Context Examples

(a) Transformers

Improve over layers

Errors

Errors v.s. # In-Context Examples Errors v.s. # In-Context Examples
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103 - Iterative Newton #06 (10 steps) 1072 LSTM Layer #04
[terative Newton #07 (14 steps) LSTM Layer #05
—— Iterative Newton #08 (17 steps) —— LSTM Layer #06
—— Iterative Newton #09 (20 steps) —— LSTM Layer #07
—— Iterative Newton #10 (21 steps) —— LSTM Layer #08
— Iterative Newton #11 (21 steps) —— LSTM Layer #09
—— Iterative Newton #12 (21 steps) —— LSTM Layer #10
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(b) Iterative Newton’s Method (c) LSTM

Improve over iterations No improvement over layers
(More like online GD)
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Overview

Auditing
How can we infer
what was in the

training data of an
LLM?
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Understanding
How do LLMs
memorize, do math,
and learn from
demonstrations?
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Leveraging
How can we
combine LLMs with
symbolic solvers for
planning tasks?
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Overview

Leveraging
How can we
combine LLMs with
symbolic solvers for
planning tasks?

R i

Language Models can Infer Action
Semantics for Classical Planners from
Environment Feedback
(in submission)

Wan(Bill) Ishia
Zhu Singh Thomason
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A Challenging Planning Problem

* You control 2 robots that use 2 different

colors (red, blue) to paint patterns in floor Initial
tiles State

« Robots can move in four directions (up,

down, left and right) A 7

* Robots paint with one color at a time, and
can change their spray guns to any color

« Robots can only paint the tile that is in front Goal
(up) and behind (down) them State

* Once a tile has been painted, no robot can
stand onit.
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How to solve?

Symbolic Solver Large Language Model
* Pros: Dedicated search * Pros: Natural language
algorithms for long-term understanding (could interpret

Idea: Use LLM to generate a formal specification,
then feed it to the solver to generate final plan!

TOTTTIdITY SpeCIlly rdics Ol Ulie Pialimg

environment » Pros: Reasonably good at
outputting formal
specifications
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Baselines

Plan Success Rate
0 20 40

GPT-4 Direct Plan 1l
Claude 3.5 Direct Plan 1

Llama 3 405B Direct Plan 1

60

80

100

« LLM by itself cannot
directly predict a
good sequence of
actions
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Baselines

Plan Success Rate
20 40

GPT-4 Direct Plan
Claude 3.5 Direct Plan

Llama 3 405B Direct Plan

GPT-4 Specification + Solver

« LLM by itself cannot
directly predict a
good sequence of
actions

* LLM struggles to
generate correct
formal specifications

« How to fix?

Environment
feedback!

60 80 100
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Combining LLMs and Solvers

* LLM generates formal specification for
symbolic solver based on natural language
description

* Requirements and effects of each action

 Ask solver to find a plan to reach the goal
based on this specification

* |f plan found, execute it in environment
* If it works: Donel!
« Otherwise: Environment gives feedback to LLM

* If plan not found: Try some partial plan in
the environment, provide feedback to LLM

- LLM takes feedback from environment and
refines the specification for solver

Improved
Formal
@ specification
>

LLM Symbolic Solver
FeedbaCk Compu‘ted
on what

plan
went wrong ¢

<>
<>
Enwronment
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Baselines

 With environment
feedback: LLM can
: try new
h -4 : ) -
Our method with GPT-4 interpretations until it
finds one that works!

Plan Success Rate * LLM by itself cannot

0 20 40 60 8o 100 directly predicta

good sequence of

GPT-4 Direct Plan 1l actions

Claude 3.5 Direct Plan 1B * LLM struggles to

enerate correct

Llama 3 405B Direct Plan 1l ormal SpelelCathnS
I

GPT-4 Specification + Solver
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Conclusion: LLMs and Planning

Improved
» Starting point: Recognize strengths Formal
and weaknesses of LLMs, other specification |
tools
LLM Symbolic Solver

e LLMs can be useful for

 Deciphering natural language
descriptions

* Interacting with formal tools

 OQutputs are often not entirely
correct, but can be refined with
good feedback

Feedback Computed
on what & plan
wentwrong \@y
¢
@,

Environment
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Broader Conclusions

« Scientific study of LLMs is
necessary and can yield actionable
insights

 Studying memorization can guide
policy, copyright compliance

 Studying model internals can enable
us to fortify them to improve
reliability

 Studying LLM weaknesses helps us
identify complementary modules
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Thank you!

Auditing Understanding Leveraging
How can we infer How do LLMs How can we
what was in the memorize, do math, combine LLMs with
training data of an and learn from symbolic solvers for
LLM? demonstrations? planning tasks?
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2 4 6 8 10
Avg. token loss

Contact: robinjia@usc.edu
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