
Auditing, Understanding,
and Leveraging
Large Language Models

Robin Jia
University of Southern California

2024 research talk (Stanford, UCSD, UC Berkeley, UCLA)

Large Language Models, Warts and All

2

Auditing, Understanding, and Leveraging

3

Auditing
Given an LLM, what
can we infer about

how it was created?

Understanding
Can we understand
how LLMs internally
make predictions?

Leveraging
How can we

overcome LLMs’
deficiencies to solve

complex tasks?

Overview

4

Auditing
How can we infer
what was in the

training data of an
LLM?

Understanding
How do LLMs

memorize, do math,
and learn from

demonstrations?

Leveraging
How can we

combine LLMs with
symbolic solvers for

planning tasks?

Overview

5

Auditing
How can we infer
what was in the

training data of an
LLM?

Johnny Wei* Ryan Wang*

Proving Membership in
LLM Pretraining Data via

Data Watermarks
ACL Findings 2024

Legal Landscape for Training Data

6

Data Memorization as Evidence

7
https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf

https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf

Data Memorization has Low Power

• Complete memorization of an
article is a smoking gun,
if detected

• LLM’s unlikely to memorize full
documents unless they are
duplicated many times
• Consider smaller publishers than

NYT

• Goal: Detect usage of a data
collection even if no individual
article was memorized verbatim

8
Carlini et al. Quantifying Memorization Across Neural Language Models. ICLR 2023.

Data Watermarks

• Idea: Add a consistent watermark to
every document in the collection
• E.g., Append “Mpadd*t6Ex” to every

document (can hide in webpage with CSS)

• Check whether LLM memorizes the
watermark (not any individual document)
• Watermark appears many times in corpus:

More likely to be memorized

• Watermark drawn from random distribution:
Enables rigorous statistical tests

9

Proving Data Usage with Statistical Tests

10

LLM

Mpadd*t6Ex

h=)ofciNC[v
PUVp:Z[mR*
p<;caVs/d@
0]Of=%.Cqf

Null Distribution

Do Watermarks Work?

• Yes!

• We trained medium-scale
language models on data with
watermarks

• Can detect watermark from
model behavior alone—proof
that it was seen during
training!

11

Setting: 80 character watermark
inserted into 256 documents

What about Even Larger LMs?

• Can’t train very
large LMs ourselves

• Idea: Use SHA/MD5
hashes as proxy for
watermarks

12

Larger LM’s Memorize Common Hashes

• Model: BLOOM-176B
• Dataset is publicly available

• All hashes repeated at least 100
times are detectable

• Longer hashes easier to detect

13

Conclusion: Data Watermarks

• Data watermarks:
• Statistically rigorous

• Scale to very large models

• Other results (see paper)
• Stealthier watermarks using

imperceptible Unicode
substitutions

• Effects of “interference”
(multiple independent
watermarkers)

14

Overview

15

Auditing
How can we infer
what was in the

training data of an
LLM?

Understanding
How do LLMs

memorize, do math,
and learn from

demonstrations?

Leveraging
How can we

combine LLMs with
symbolic solvers for

planning tasks?

Overview

16

Understanding
How do LLMs

memorize, do math,
and learn from

demonstrations?

Ting-Yun
Chang

Jesse
Thomason

Do Localization Methods
Actually Localize Memorized

Data in LLMs?
NAACL 2024

Rote Memorization

17
https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf

Scientific Question:
How do Language Models do this?

https://storage.courtlistener.com/recap/gov.uscourts.nysd.612697/gov.uscourts.nysd.612697.1.0.pdf

Evaluating Localization

• Localization method: Identifies
(small) subset of model
components most responsible for
memorizing example x
• Pruning, integrated gradients, etc.

• How to evaluate localization?
• We don’t know the ground truth (where

information is stored)
• We don’t even know if knowledge is

really stored in a localized way!

• Do localization methods really
localize memorized knowledge?

18

Pruning-based Localization

• Learn a “mask” in [0, 1]
• Loss #1: Retain

memorization of 1 given
document

• Loss #2: Make mask as
sparse as possible

• Parameters
corresponding to mask’s
non-zero entries must be
important

• Two variants called
Slimming & Hard
Concrete

19

F
F

N
2

Neurons for
this layer

Learned
mask

.9

FFN1

0

0

0

0

0

0

.8

Pruning-based Localization

• Learn a “mask” in [0, 1]
• Loss #1: Retain

memorization of 1 given
document

• Loss #2: Make mask as
sparse as possible

• Parameters
corresponding to mask’s
non-zero entries must be
important

• Two variants called
Slimming & Hard
Concrete

20

F
F

N
2

Neurons for
this layer

Learned
mask

.9

FFN1

0

0

0

0

0

0

.8

Benchmark #1: Injection-Based

• Idea: Inject new
knowledge into model
using only some
parameters

21

1. Acquire new sentence
not seen during pre-training

2. Fine-tune small subset of
model parameters to
memorize new sentence

Benchmark #1: Injection-Based

• Idea: Inject new
knowledge into model
using only some
parameters

• Good: We have ground
truth for evaluation

• Bad: Where we inject
may not be where
models “naturally”
store knowledge

22

1. Acquire new sentence
not seen during pre-training

2. Fine-tune small subset of
model parameters to
memorize new sentence

3. Run localization method
on resulting model

4. Evaluate recall of
compared with ground
truth parameters

Benchmark #2: Deletion-Based

• Idea: Delete existing
knowledge from model
by removing the most
important parameters

23

1. Find already-memorized
sequence (quotes, ToS, etc.)

2. Run localization method
on pre-trained model

Benchmark #2: Deletion-Based

• Idea: Delete existing
knowledge from model
by removing the most
important parameters

• Good: Studies how
LLM’s naturally
memorize data

• Bad: No ground truth

24

1. Find already-memorized
sequence (quotes, ToS, etc.)

2. Run localization method
on pre-trained model

3. Delete (zero-out)
identified parameters

4. Evaluate how much LLM
forgets the sequence

Injection Benchmark Results

• Setting: Pythia-Deduped 2.8B, 0.1% of parameters fine-tuned

• Tested 4 models x 2 fine-tuning ratios x 3 recall levels:
Hard Concrete or Slimming always best (both pruning-based)

• All methods greatly outperform random baseline

25

0 20 40 60 80 100

Random

Activation Norm

Integrated Gradients

Zero-Out

Slimming

Hard Concrete

Recall @ 0.1%

Recall @ 0.2%

Recall @ 0.5%

Deletion Benchmark Results

• Setting: Pythia-Deduped 2.8B, delete top 0.5% of parameters

• Tested 3 models x 2 removal ratios:
Hard Concrete or Slimming always best (both pruning-based)

• All methods greatly outperform random baseline

26

0 10 20 30 40 50 60

Random

Activation Norm

Integrated Gradients

Zero-Out

Slimming

Hard Concrete

Forgetting of
target sequence

Forgetting of
other sequences

Conclusion: Does Localization Work?

• Across two different localization
benchmarks:
• Pruning-based methods always best

• All methods do something non-trivial

• Knowledge does appear to be stored
in a localizable way

• Other results (see paper)
• Knowledge is distributed across layers,

not localized to specific layers

• Early layers perform generally useful
function, not specialized to single
example

27

Overview

28

Understanding
How do LLMs

memorize, do math,
and learn from

demonstrations?

Deqing
Fu

Tianyi
Zhou

Pre-trained Large Language
Models Use Fourier Features

to Compute Addition
NeurIPS 2024

Vatsal
Sharan

How do Language Models do Arithmetic?

• Setting: Fine-tune GPT-
2-XL for integer
addition
• All numbers between 1

and 520, so they are
single tokens

• Accuracy ≈100%

• Model doesn’t
memorize, it computes
an answer!

• Some layers perform
modular arithmetic

29

Correct
answer: 108

Input: Put together 15 and 93.
Plot how each MLP layer contributes to prediction

Promoting
all even

numbers

Promoting all
numbers that

end in “8”

How do Language Models do Arithmetic?

• Setting: Fine-tune GPT-
2-XL for integer
addition
• All numbers between 1

and 520, so they are
single tokens

• Accuracy ≈100%

• Model doesn’t
memorize, it computes
an answer!

• Some layers perform
modular arithmetic

• Others approximate the
answer

30

Correct
answer: 108

Input: Put together 15 and 93.
Plot how each MLP layer contributes to prediction

Promoting all
numbers close

to 108

Layer-wise logits are sparse in Fourier domain

• Both MLP and attention have outlier high-frequency components

• Periods correspond to common multiples (T=2, 5, 10)
31

Logits from MLP Layer 33 Logits from Attention Layer 40

Layer-wise logits are sparse in Fourier domain

• Same outlier frequencies appear across many layers

32

What do different frequencies do?

33

• Low frequency: Peaks at roughly the right answer (approximation)

• High frequency: Knows the right answer mod 2, 5 (classification mod n)

What do different frequencies do?

• Low frequency: Peaks at roughly the right answer (approximation)

• High frequency: Knows the right answer mod 2, 5 (classification mod n)

• Mechanism: The sum of these waves “peaks” at the right place
34

Fourier features causally impact predictions

• Idea: Project out
dimensions of the
hidden state that
correspond to {low,
high}-frequency logit
waves

35

Low frequency High frequency

Fourier features causally impact predictions

36

Filter out high
frequency components

• Idea: Project out
dimensions of the
hidden state that
correspond to {low,
high}-frequency logit
waves

Fourier features causally impact predictions

37

Filter out low
frequency components• Idea: Project out

dimensions of the
hidden state that
correspond to {low,
high}-frequency logit
waves

Fourier features causally impact predictions

38

Fourier
Component
Removed

From which
model
layers?

Accuracy

None - 99.7%

Low-Frequency Attn & MLP 5.9%

High-Frequency Attn & MLP 27.1%

Both ablations
have large
effect

• Idea: Project out
dimensions of the
hidden state that
correspond to {low,
high}-frequency logit
waves

Fourier features causally impact predictions

39

Fourier
Component
Removed

From which
model
layers?

Accuracy

None - 99.7%

Low-Frequency Attn & MLP 5.9%

High-Frequency Attn & MLP 27.1%

Low-Frequency Attn only 99.1%

High-Frequency Attn only 78.4%

Attention
important for
high
frequencies

Both ablations
have large
effect

• Idea: Project out
dimensions of the
hidden state that
correspond to {low,
high}-frequency logit
waves

Fourier features causally impact predictions

40

Fourier
Component
Removed

From which
model
layers?

Accuracy

None - 99.7%

Low-Frequency Attn & MLP 5.9%

High-Frequency Attn & MLP 27.1%

Low-Frequency Attn only 99.1%

High-Frequency Attn only 78.4%

Low-Frequency MLP only 35.9%

High-Frequency MLP only 98.1%

Attention
important for
high
frequencies

MLP
important for
low
frequencies

Both ablations
have large
effect

• Idea: Project out
dimensions of the
hidden state that
correspond to {low,
high}-frequency logit
waves

Fourier ablations have predictable effects

Filter Low-Freq from MLP

• Removes ability to approximate the answer

• Still correct modulo 10!

• MLP + low-freq does approximation

Filter High-Freq from Attn

• Removes ability to be correct mod 10

• Still approximately correct!

• Attention + high-freq does classification
mod n (modular addition)

41

Off by… 10
50

100
40
90

200
other 10’s
Non-10’s

Off by… 2
1
4
3
6
5

other

Fourier features come from pre-training

Interpretability Evidence

• Visualize Fourier Transform of pre-trained
token embeddings of integers

• Aggregate with L2 norm across all dimensions

• Same outlier frequencies present

Experimental Evidence

• Randomly initialized model cannot achieve
good accuracy after fine-tuning
• 94% test accuracy after much longer training
• Does not learn high-frequency Fourier

components, makes many off-by-one errors

• Pre-trained token embeddings rescue
performance + fast convergence

42

Number of epochs

V
a

lid
a

ti
o

n

A
c

c
u

ra
c

y

100%

0%

No Fourier sparsity without Pre-training

• Same figure as before, but for randomly initialized + fine-tuned GPT-2-XL architecture

• Only low-frequency components: Model can approximate but not compute mod 2
• Explains why almost all errors are off-by-1

43

Strong low-
frequency
components

No peaks in
high-frequency
band

Strong low-
frequency
components

No peaks in
high-frequency
band

LLMs and in-context learning

• GPT-J (6B) with 4-shot in-context learning (72% accuracy)

• Very similar Fourier features as fine-tuned GPT-2-XL
44

Conclusion: LLMs and arithmetic

• Arithmetic is not like
factual recall: LLM
computes the answer

• Model combines
“waves” of different
frequencies to deduce
precise answer

• Pre-training learns
features that enable this
precise mechanism

45

Correct
answer: 108

Input: Put together 15 and 93.
Plot how each MLP layer contributes to prediction

Promoting
all even

numbers

Promoting all
numbers close

to 108

Overview

46

Understanding
How do LLMs

memorize, do math,
and learn from

demonstrations?

Deqing
Fu

Tianqi
Chen

Transformers Learn Higher-
Order Optimization Methods

for In-Context Learning: A
Study with Linear Models

NeurIPS 2024

Vatsal
Sharan

How do Models do In-Context Learning?

47

In-Context Learning

Do Transformers really learn
to implement gradient

descent for ICL?

Transformers learn higher-order optimization

48

Transformer layerTransformer layer

It
e

ra
ti

ve
 N

e
w

to
n

 s
te

p
s

(s
e

c
o

n
d

-o
rd

e
r

o
p

ti
m

iz
a

ti
o

n
)

G
ra

d
ie

n
t

D
e

s
c

e
n

t
s

te
p

s
(f

ir
s

t-
o

rd
e

r
o

p
ti

m
iz

a
ti

o
n

)

Need >1000 GD steps
to match Transformer

Similarity between learned models & predictions from different TF layers

Conclusion: How Transformers do ICL

• Transformers converge too fast
to be doing gradient descent

• They are much more similar to
Iterative Newton

• LSTMs learn a very different
algorithm (more like OGD)

• Can we use these insights to
make future models more
precise?

49

Transformer layer

It
e

ra
ti

ve
 N

e
w

to
n

 s
te

p
s

(s
e

c
o

n
d

-o
rd

e
r

o
p

ti
m

iz
a

ti
o

n
)

Comparisons across architectures

50

Improve over layers Improve over iterations No improvement over layers
(More like online GD)

Overview

51

Auditing
How can we infer
what was in the

training data of an
LLM?

Understanding
How do LLMs

memorize, do math,
and learn from

demonstrations?

Leveraging
How can we

combine LLMs with
symbolic solvers for

planning tasks?

Overview

52

Leveraging
How can we

combine LLMs with
symbolic solvers for

planning tasks?

Language Models can Infer Action
Semantics for Classical Planners from

Environment Feedback
(in submission)

Wang (Bill)
Zhu

Jesse
Thomason

Ishika
Singh

A Challenging Planning Problem

• You control 2 robots that use 2 different
colors (red, blue) to paint patterns in floor
tiles

• Robots can move in four directions (up,
down, left and right)

• Robots paint with one color at a time, and
can change their spray guns to any color

• Robots can only paint the tile that is in front
(up) and behind (down) them

• Once a tile has been painted, no robot can
stand on it.

53

Initial
State

Goal
State

How to solve?

Symbolic Solver

• Pros: Dedicated search
algorithms for long-term
planning

• Cons: Requires an expert to
formally specify rules of the
environment

Large Language Model

• Pros: Natural language
understanding (could interpret
the description directly)

• Cons: Cannot do long-term
planning

• Pros: Reasonably good at
outputting formal
specifications

54

Idea: Use LLM to generate a formal specification,
then feed it to the solver to generate final plan!

Baselines

• LLM by itself cannot
directly predict a
good sequence of
actions

55

0 20 40 60 80 100

GPT-4 Direct Plan

Claude 3.5 Direct Plan

Llama 3 405B Direct Plan

GPT-4 Specification + Solver

Our method with GPT-4

Plan Success Rate

Baselines

• LLM by itself cannot
directly predict a
good sequence of
actions

• LLM struggles to
generate correct
formal specifications

• How to fix?
Environment
feedback!

56

0 20 40 60 80 100

GPT-4 Direct Plan

Claude 3.5 Direct Plan

Llama 3 405B Direct Plan

GPT-4 Specification + Solver

Our method with GPT-4

Plan Success Rate

Combining LLMs and Solvers

• LLM generates formal specification for
symbolic solver based on natural language
description
• Requirements and effects of each action

• Ask solver to find a plan to reach the goal
based on this specification

• If plan found, execute it in environment
• If it works: Done!
• Otherwise: Environment gives feedback to LLM

• If plan not found: Try some partial plan in
the environment, provide feedback to LLM

• LLM takes feedback from environment and
refines the specification for solver

57

LLM Symbolic Solver

Environment

Formal
specification

Computed
plan

Feedback
on what

went wrong

Improved

Baselines

• LLM by itself cannot
directly predict a
good sequence of
actions

• LLM struggles to
generate correct
formal specifications

• With environment
feedback: LLM can
try new
interpretations until it
finds one that works!

58

0 20 40 60 80 100

GPT-4 Direct Plan

Claude 3.5 Direct Plan

Llama 3 405B Direct Plan

GPT-4 Specification + Solver

Our method with GPT-4

Plan Success Rate

Conclusion: LLMs and Planning

• Starting point: Recognize strengths
and weaknesses of LLMs, other
tools

• LLMs can be useful for
• Deciphering natural language

descriptions

• Interacting with formal tools

• Outputs are often not entirely
correct, but can be refined with
good feedback

59

LLM Symbolic Solver

Environment

Formal
specification

Feedback
on what

went wrong

Improved

Computed
plan

Broader Conclusions

• Scientific study of LLMs is
necessary and can yield actionable
insights

• Studying memorization can guide
policy, copyright compliance

• Studying model internals can enable
us to fortify them to improve
reliability

• Studying LLM weaknesses helps us
identify complementary modules

60

Thank you!

61

Auditing
How can we infer
what was in the

training data of an
LLM?

Understanding
How do LLMs

memorize, do math,
and learn from

demonstrations?

Leveraging
How can we

combine LLMs with
symbolic solvers for

planning tasks?

Contact: robinjia@usc.edu

mailto:robinjia@usc.edu

	Default Section
	Slide 1: Auditing, Understanding, and Leveraging Large Language Models
	Slide 2: Large Language Models, Warts and All
	Slide 3: Auditing, Understanding, and Leveraging
	Slide 4: Overview
	Slide 5: Overview
	Slide 6: Legal Landscape for Training Data
	Slide 7: Data Memorization as Evidence
	Slide 8: Data Memorization has Low Power
	Slide 9: Data Watermarks
	Slide 10: Proving Data Usage with Statistical Tests
	Slide 11: Do Watermarks Work?
	Slide 12: What about Even Larger LMs?
	Slide 13: Larger LM’s Memorize Common Hashes
	Slide 14: Conclusion: Data Watermarks
	Slide 15: Overview
	Slide 16: Overview
	Slide 17: Rote Memorization
	Slide 18: Evaluating Localization
	Slide 19: Pruning-based Localization
	Slide 20: Pruning-based Localization
	Slide 21: Benchmark #1: Injection-Based
	Slide 22: Benchmark #1: Injection-Based
	Slide 23: Benchmark #2: Deletion-Based
	Slide 24: Benchmark #2: Deletion-Based
	Slide 25: Injection Benchmark Results
	Slide 26: Deletion Benchmark Results
	Slide 27: Conclusion: Does Localization Work?
	Slide 28: Overview
	Slide 29: How do Language Models do Arithmetic?
	Slide 30: How do Language Models do Arithmetic?
	Slide 31: Layer-wise logits are sparse in Fourier domain
	Slide 32: Layer-wise logits are sparse in Fourier domain
	Slide 33: What do different frequencies do?
	Slide 34: What do different frequencies do?
	Slide 35: Fourier features causally impact predictions
	Slide 36: Fourier features causally impact predictions
	Slide 37: Fourier features causally impact predictions
	Slide 38: Fourier features causally impact predictions
	Slide 39: Fourier features causally impact predictions
	Slide 40: Fourier features causally impact predictions
	Slide 41: Fourier ablations have predictable effects
	Slide 42: Fourier features come from pre-training
	Slide 43: No Fourier sparsity without Pre-training
	Slide 44: LLMs and in-context learning
	Slide 45: Conclusion: LLMs and arithmetic
	Slide 46: Overview
	Slide 47: How do Models do In-Context Learning?
	Slide 48: Transformers learn higher-order optimization
	Slide 49: Conclusion: How Transformers do ICL
	Slide 50: Comparisons across architectures
	Slide 51: Overview
	Slide 52: Overview
	Slide 53: A Challenging Planning Problem
	Slide 54: How to solve?
	Slide 55: Baselines
	Slide 56: Baselines
	Slide 57: Combining LLMs and Solvers
	Slide 58: Baselines
	Slide 59: Conclusion: LLMs and Planning
	Slide 60: Broader Conclusions
	Slide 61: Thank you!

