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Challenge 3A and Method Overview

* Given two tubes of data from a single patient, predict the
antigen used in each tube

* Our Approach:

Automatically identify populations of cells by surface marker

Extract population meta-features and build model to predict antigen group

* Identified a highly predictive population for determining
antigen group
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Surface Markers Normalized for Simple
Cluster Matching

Surface marker expression variable between patients

Need to establish population correspondence
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Surface Markers Normalized for Simple
Cluster Matching

* Surface marker expression variable between patients
* Need to establish population correspondence

* Assume bimodal expression & landmark normalize
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Cells Clustered With 2D Density-Based
Merging & Greedy Dimensional Exploration
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Cells Clustered With 2D Density-Based
Merging & Greedy Dimensional Exploration

* Data from all patients and
conditions combined
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Cells Clustered With 2D Density-Based
Merging & Greedy Dimensional Exploration
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Cells Clustered With 2D Density-Based

Merging & Greedy Dimensional Exploration

Data from all patients and
conditions combined

Combined data clustered in
all pairwise sets of
dimensions

Dimensions with highest
confidence clusters selected

Greedy Dimensional Exploration
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Cells Clustered With 2D Density-Based
Merging & Greedy Dimensional Exploration

° Data’ from a'” Patients and Greedy Dimensional Exploration
conditions combined 1 oo -
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e Combined data clustered in
all pairwise sets of
dimensions

. . . . <
* Dimensions with highest a
confidence clusters selected

* lIdentified clusters recursively
projected and clustered until
no new clusters found Chs




Per-patient Cluster Meta-features Extracted
For Model Construction
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Per-patient Cluster Meta-features Extracted
For Model Construction

* Data separated back into
source components
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Per-patient Cluster Meta-features Extracted
For Model Construction

* Data separated back into
source components
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Per-patient Cluster Meta-features Extracted
For Model Construction

* Data separated back into
source components

* Cluster Meta-features
extracted |!. |*
/4 ;\
Cluster density Densis PesoDit | Remmoloke
. . . . . Patient 1 ENV 0.37 0.11 ‘ 324
Antigen condition density difference e
Vs negative controls Patemt1GAG) 02 %06 2O
. . Patient 1 NEG 0.26 003 2384
Response of clusters in cytokine | o f
i ) ) Patient 2 ENV 0.54 008 4.63
response dimensions as quantified by -
. E 2 GAG 0.34 0.02 3.85
Earth Mover's Distance (EMD) el IR R S
Patient 2 NEG 042 0.01 2.11

* Logistic Regression
Classification Model built
from features
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Cross validation Used to Identify Optimal
Classifier and Features

100 runs of random 3-fold internal cross validation using
different combinations of features

Logistic regression model using cluster difference and EMD
features had best performance

5 of 100 10-fold cross valids of 100 10-fold cross valids of 100 10-fold cross valids of 100 10-fold cross valid
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Cross validation Used to Identify Optimal
Classifier and Features

* 100 runs of random 3-fold internal cross validation using
different combinations of features

* Logistic regression model using cluster difference and EMD
features had best performance

* Used to predict test labels
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Density of CD4/CD8 Double Positive T-cell Population
Most Important Factor in Logistic Regression Model
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Density of CD4/CD8 Double Positive T-cell Population
Most Important Factor in Logistic Regression Model

* Backgating suggest possibly two subpopulations within
CD4/CD8 cells
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Thoughts & Future Work

* Identification of CD4+/CD8+ population highlights
unbiased nature of method

* Need to identify all potentially predictive features and
their predictive power for users

* Automated methods critical for comprehensive
exploration of higher-dimensional data
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e Questions?
rbruggner@stanford.edu
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